These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 22349175)
21. Energy Expenditure During Acute Periods of Sitting, Standing, and Walking. Creasy SA; Rogers RJ; Byard TD; Kowalsky RJ; Jakicic JM J Phys Act Health; 2016 Jun; 13(6):573-8. PubMed ID: 26693809 [TBL] [Abstract][Full Text] [Related]
22. Validity of the SenseWear® Armband to predict energy expenditure in pregnant women. Smith KM; Lanningham-Foster LM; Welk GJ; Campbell CG Med Sci Sports Exerc; 2012 Oct; 44(10):2001-8. PubMed ID: 22617395 [TBL] [Abstract][Full Text] [Related]
23. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [TBL] [Abstract][Full Text] [Related]
24. The accuracy of fitness watches for the measurement of heart rate and energy expenditure during moderate intensity exercise. Jagim AR; Koch-Gallup N; Camic CL; Kroening L; Nolte C; Schroeder C; Gran L; Erickson JL J Sports Med Phys Fitness; 2021 Feb; 61(2):205-211. PubMed ID: 32734757 [TBL] [Abstract][Full Text] [Related]
25. Energy expenditure estimates of the Caltrac accelerometer for running, race walking, and stepping. Swan PD; Byrnes WC; Haymes EM Br J Sports Med; 1997 Sep; 31(3):235-9. PubMed ID: 9298560 [TBL] [Abstract][Full Text] [Related]
26. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry. Garet M; Boudet G; Montaurier C; Vermorel M; Coudert J; Chamoux A Eur J Appl Physiol; 2005 May; 94(1-2):46-53. PubMed ID: 15609030 [TBL] [Abstract][Full Text] [Related]
27. Energy expenditure of walking at different intensities in Brazilian college women. Anjos LA; Wahrlich V; Bossan FM; Salies MN; Silva PB Clin Nutr; 2008 Feb; 27(1):121-5. PubMed ID: 17981375 [TBL] [Abstract][Full Text] [Related]
28. Between-day and within-day variability in the relation between heart rate and oxygen consumption: effect on the estimation of energy expenditure by heart-rate monitoring. McCrory MA; Molé PA; Nommsen-Rivers LA; Dewey KG Am J Clin Nutr; 1997 Jul; 66(1):18-25. PubMed ID: 9209164 [TBL] [Abstract][Full Text] [Related]
29. Validation of the SenseWear Pro3 Armband using an incremental exercise test. van Hoye K; Mortelmans P; Lefevre J J Strength Cond Res; 2014 Oct; 28(10):2806-14. PubMed ID: 25250859 [TBL] [Abstract][Full Text] [Related]
30. EMG, heart rate, and accelerometer as estimators of energy expenditure in locomotion. Tikkanen O; Kärkkäinen S; Haakana P; Kallinen M; Pullinen T; Finni T Med Sci Sports Exerc; 2014 Sep; 46(9):1831-9. PubMed ID: 24504428 [TBL] [Abstract][Full Text] [Related]
31. Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study. Beghin L; Michaud L; Guimber D; Vaksmann G; Turck D; Gottrand F Br J Nutr; 2002 Nov; 88(5):533-43. PubMed ID: 12425734 [TBL] [Abstract][Full Text] [Related]
32. Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. Zakeri I; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2008 Jun; 104(6):1665-73. PubMed ID: 18403453 [TBL] [Abstract][Full Text] [Related]
33. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings. Schneller MB; Pedersen MT; Gupta N; Aadahl M; Holtermann A Sensors (Basel); 2015 Mar; 15(3):6133-51. PubMed ID: 25781506 [TBL] [Abstract][Full Text] [Related]
34. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. Ceesay SM; Prentice AM; Day KC; Murgatroyd PR; Goldberg GR; Scott W; Spurr GB Br J Nutr; 1989 Mar; 61(2):175-86. PubMed ID: 2706223 [TBL] [Abstract][Full Text] [Related]
35. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children. Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Dwyer TJ; Alison JA; McKeough ZJ; Elkins MR; Bye PT Respir Med; 2009 Oct; 103(10):1511-7. PubMed ID: 19464863 [TBL] [Abstract][Full Text] [Related]
37. Polar Activity Watch 200: a new device to accurately assess energy expenditure. Brugniaux JV; Niva A; Pulkkinen I; Laukkanen RM; Richalet JP; Pichon AP Br J Sports Med; 2010 Mar; 44(4):245-9. PubMed ID: 18413338 [TBL] [Abstract][Full Text] [Related]
38. Energy Expenditure in Institutionalized Older Adults: Validation of SenseWear Mini. Martien S; Seghers J; Boen F; Delecluse C Med Sci Sports Exerc; 2015 Jun; 47(6):1265-71. PubMed ID: 25251046 [TBL] [Abstract][Full Text] [Related]
39. Energy expenditure prediction using a miniaturized ear-worn sensor. Atallah L; Leong JJ; Lo B; Yang GZ Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349 [TBL] [Abstract][Full Text] [Related]
40. Heart rate recording method validated by whole body indirect calorimetry in 10-yr-old children. Bitar A; Vermorel M; Fellmann N; Bedu M; Chamoux A; Coudert J J Appl Physiol (1985); 1996 Sep; 81(3):1169-73. PubMed ID: 8889750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]