These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22349213)

  • 1. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.
    Davies WI; Wilkie SE; Cowing JA; Hankins MW; Hunt DM
    Cell Mol Life Sci; 2012 Jul; 69(14):2455-64. PubMed ID: 22349213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone visual pigments of aquatic mammals.
    Newman LA; Robinson PR
    Vis Neurosci; 2005; 22(6):873-9. PubMed ID: 16469194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.
    Katayama K; Furutani Y; Iwaki M; Fukuda T; Imai H; Kandori H
    Phys Chem Chem Phys; 2018 Jan; 20(5):3381-3387. PubMed ID: 29297909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The retinal pigments of the whale shark (
    Fasick JI; Algrain H; Serba KM; Robinson PR
    Vis Neurosci; 2019 Nov; 36():E011. PubMed ID: 31718726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride-dependent spectral tuning mechanism of L-group cone visual pigments.
    Yamashita T; Nakamura S; Tsutsui K; Morizumi T; Shichida Y
    Biochemistry; 2013 Feb; 52(7):1192-7. PubMed ID: 23350963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
    Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM
    Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences.
    Das D; Wilkie SE; Hunt DM; Bowmaker JK
    Vision Res; 1999 Aug; 39(17):2801-15. PubMed ID: 10492811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy.
    Saito T; Koyanagi M; Sugihara T; Nagata T; Arikawa K; Terakita A
    Zoological Lett; 2019; 5():35. PubMed ID: 31890273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo).
    Hart NS; Partridge JC; Cuthill IC
    Vision Res; 1999 Oct; 39(20):3321-8. PubMed ID: 10615498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LWS visual pigment in owls: Spectral tuning inferred by genetics.
    Vasconcelos FTGR; Naman MJV; Hauzman E; Baron J; Fix Ventura D; Bonci DMO
    Vision Res; 2019 Dec; 165():90-97. PubMed ID: 31706045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment.
    Katayama K; Nakamura S; Sasaki T; Imai H; Kandori H
    Biochemistry; 2019 Jul; 58(26):2944-2952. PubMed ID: 31144811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.