These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22349213)

  • 21. Spectroscopic analysis of the effect of chloride on the active intermediates of the primate L group cone visual pigment.
    Morizumi T; Sato K; Shichida Y
    Biochemistry; 2012 Dec; 51(50):10017-23. PubMed ID: 23176664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual.
    Weadick CJ; Chang BS
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S11. PubMed ID: 17288569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.
    Kawamura S; Kasagi S; Kasai D; Tezuka A; Shoji A; Takahashi A; Imai H; Kawata M
    Vision Res; 2016 Oct; 127():67-73. PubMed ID: 27476645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.
    Carvalho LS; Cowing JA; Wilkie SE; Bowmaker JK; Hunt DM
    Mol Biol Evol; 2007 Aug; 24(8):1843-52. PubMed ID: 17556758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics.
    Hart NS
    J Exp Biol; 2004 Mar; 207(Pt 7):1229-40. PubMed ID: 14978063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233.
    Hiramatsu C; Radlwimmer FB; Yokoyama S; Kawamura S
    Vision Res; 2004; 44(19):2225-31. PubMed ID: 15208009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The visual pigments of the West Indian manatee (Trichechus manatus).
    Newman LA; Robinson PR
    Vision Res; 2006 Oct; 46(20):3326-30. PubMed ID: 16650454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shedding light on serpent sight: the visual pigments of henophidian snakes.
    Davies WL; Cowing JA; Bowmaker JK; Carvalho LS; Gower DJ; Hunt DM
    J Neurosci; 2009 Jun; 29(23):7519-25. PubMed ID: 19515920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning.
    Escobar-Camacho D; Carleton KL; Narain DW; Pierotti MER
    Mol Ecol; 2020 Jun; 29(12):2234-2253. PubMed ID: 32421918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anion sensitivity and spectral tuning of cone visual pigments in situ.
    Kleinschmidt J; Harosi FI
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9181-5. PubMed ID: 1409622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish.
    Hunt DM; Dulai KS; Partridge JC; Cottrill P; Bowmaker JK
    J Exp Biol; 2001 Oct; 204(Pt 19):3333-44. PubMed ID: 11606607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments.
    Ala-Laurila P; Pahlberg J; Koskelainen A; Donner K
    Vision Res; 2004; 44(18):2153-8. PubMed ID: 15183682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.