These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 22349249)
1. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Martin RA; Yue S; Hanna JV; Lee PD; Newport RJ; Smith ME; Jones JR Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1422-43. PubMed ID: 22349249 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
3. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826 [TBL] [Abstract][Full Text] [Related]
4. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
5. Reprint of: Review of bioactive glass: From Hench to hybrids. Jones JR Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346 [TBL] [Abstract][Full Text] [Related]
6. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
7. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. Yu B; Turdean-Ionescu CA; Martin RA; Newport RJ; Hanna JV; Smith ME; Jones JR Langmuir; 2012 Dec; 28(50):17465-76. PubMed ID: 23171477 [TBL] [Abstract][Full Text] [Related]
8. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964 [TBL] [Abstract][Full Text] [Related]
9. Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution. Mahony O; Jones JR Nanomedicine (Lond); 2008 Apr; 3(2):233-45. PubMed ID: 18373428 [TBL] [Abstract][Full Text] [Related]
10. Sol-gel silica-based biomaterials and bone tissue regeneration. Arcos D; Vallet-Regí M Acta Biomater; 2010 Aug; 6(8):2874-88. PubMed ID: 20152946 [TBL] [Abstract][Full Text] [Related]
11. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Vallet-Regí M; Izquierdo-Barba I; Colilla M Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1400-21. PubMed ID: 22349248 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration. Chung JJ; Fujita Y; Li S; Stevens MM; Kasuga T; Georgiou TK; Jones JR Acta Biomater; 2017 May; 54():411-418. PubMed ID: 28285078 [TBL] [Abstract][Full Text] [Related]
13. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Gu Y; Huang W; Rahaman MN; Day DE Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095 [TBL] [Abstract][Full Text] [Related]
14. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Bi L; Rahaman MN; Day DE; Brown Z; Samujh C; Liu X; Mohammadkhah A; Dusevich V; Eick JD; Bonewald LF Acta Biomater; 2013 Aug; 9(8):8015-26. PubMed ID: 23643606 [TBL] [Abstract][Full Text] [Related]
15. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. Pang L; Shen Y; Hu H; Zeng X; Huang W; Gao H; Wang H; Wang D Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110076. PubMed ID: 31546443 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
17. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Philippart A; Boccaccini AR; Fleck C; Schubert DW; Roether JA Expert Rev Med Devices; 2015 Jan; 12(1):93-111. PubMed ID: 25331196 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. Baino F; Vitale-Brovarone C J Biomed Mater Res A; 2011 Jun; 97(4):514-35. PubMed ID: 21465645 [TBL] [Abstract][Full Text] [Related]
19. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
20. Bioactive glass-based scaffolds for bone tissue engineering. Will J; Gerhardt LC; Boccaccini AR Adv Biochem Eng Biotechnol; 2012; 126():195-226. PubMed ID: 22085919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]