BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22349344)

  • 1. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification.
    Laurens LM; Quinn M; Van Wychen S; Templeton DW; Wolfrum EJ
    Anal Bioanal Chem; 2012 Apr; 403(1):167-78. PubMed ID: 22349344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total Fatty Acid Content Determination of Whole Microalgal Biomass Using In Situ Transesterification.
    Van Wychen S; Laurens LML
    Methods Mol Biol; 2020; 1980():203-214. PubMed ID: 29199376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent.
    Lee H; Shin WS; Jung JY; Kim CW; Lee JW; Kwon JH; Yang JW
    Bioprocess Biosyst Eng; 2015 May; 38(5):981-7. PubMed ID: 25634438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.
    Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E
    Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step in situ biodiesel production from microalgae with high free fatty acid content.
    Dong T; Wang J; Miao C; Zheng Y; Chen S
    Bioresour Technol; 2013 May; 136():8-15. PubMed ID: 23548399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline in situ transesterification of Aurantiochytrium sp. KRS 101 using potassium carbonate.
    Sung M; Han JI
    Bioresour Technol; 2016 Apr; 205():250-3. PubMed ID: 26848047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach.
    Dong T; Yu L; Gao D; Yu X; Miao C; Zheng Y; Lian J; Li T; Chen S
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10237-47. PubMed ID: 26276545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.
    Mandal S; Patnaik R; Singh AK; Mallick N
    Environ Technol; 2013; 34(13-16):2009-18. PubMed ID: 24350454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process optimization of one-step direct transesterification and dual-step extraction-transesterification of the Chlorococcum-Nannochloropsis consortium for biodiesel production.
    Mathimani T; Le TT; Salmen SH; Ali Alharbi S; Jhanani GK
    Environ Res; 2024 Jan; 240(Pt 1):117580. PubMed ID: 37925129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production.
    Alam MA; Wu J; Xu J; Wang Z
    Bioresour Technol; 2019 Nov; 291():121834. PubMed ID: 31371157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.
    Patil PD; Reddy H; Muppaneni T; Schaub T; Holguin FO; Cooke P; Lammers P; Nirmalakhandan N; Li Y; Lu X; Deng S
    Bioresour Technol; 2013 Jul; 139():308-15. PubMed ID: 23665692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.
    Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW
    Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae.
    Griffiths MJ; van Hille RP; Harrison ST
    Lipids; 2010 Nov; 45(11):1053-60. PubMed ID: 20820931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.
    Patil PD; Gude VG; Mannarswamy A; Cooke P; Munson-McGee S; Nirmalakhandan N; Lammers P; Deng S
    Bioresour Technol; 2011 Jan; 102(2):1399-405. PubMed ID: 20933395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties.
    Zarrinmehr MJ; Daneshvar E; Nigam S; Gopinath KP; Biswas JK; Kwon EE; Wang H; Farhadian O; Bhatnagar A
    Bioresour Technol; 2022 Jan; 344(Pt B):126303. PubMed ID: 34752885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.