BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22350226)

  • 1. Proficiency-based training for robotic surgery: construct validity, workload, and expert levels for nine inanimate exercises.
    Dulan G; Rege RV; Hogg DC; Gilberg-Fisher KM; Arain NA; Tesfay ST; Scott DJ
    Surg Endosc; 2012 Jun; 26(6):1516-21. PubMed ID: 22350226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construct validity of nine new inanimate exercises for robotic surgeon training using a standardized setup.
    Jarc AM; Curet M
    Surg Endosc; 2014 Feb; 28(2):648-56. PubMed ID: 24100861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Institutional Validation of Fundamental Inanimate Robotic Skills Tasks.
    Goh AC; Aghazadeh MA; Mercado MA; Hung AJ; Pan MM; Desai MM; Gill IS; Dunkin BJ
    J Urol; 2015 Dec; 194(6):1751-6. PubMed ID: 26196733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit.
    Arain NA; Dulan G; Hogg DC; Rege RV; Powers CE; Tesfay ST; Hynan LS; Scott DJ
    Surg Endosc; 2012 Oct; 26(10):2740-5. PubMed ID: 22538678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which skills really matter? proving face, content, and construct validity for a commercial robotic simulator.
    Lyons C; Goldfarb D; Jones SL; Badhiwala N; Miles B; Link R; Dunkin BJ
    Surg Endosc; 2013 Jun; 27(6):2020-30. PubMed ID: 23389060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic simulation: validation and qualitative assessment of a general surgery resident training curriculum.
    Turbati MS; Goldblatt MI; Gould JC; Higgins RM
    Surg Endosc; 2023 Mar; 37(3):2304-2315. PubMed ID: 36002680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proficiency Levels and Validity Evidence for Scoring Metrics for a Virtual Reality and Inanimate Robotic Surgery Simulation Curriculum.
    Tellez JC; Radi I; Alterio RE; Nagaraj MB; Baker HB; Scott DJ; Zeh HJ; Polanco PM
    J Surg Educ; 2024 Apr; 81(4):589-596. PubMed ID: 38403503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of three standardized robotic surgery training methods.
    Hung AJ; Jayaratna IS; Teruya K; Desai MM; Gill IS; Goh AC
    BJU Int; 2013 Oct; 112(6):864-71. PubMed ID: 23470136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a comprehensive, proficiency-based training program for robotic surgery.
    Dulan G; Rege RV; Hogg DC; Gilberg-Fisher KM; Arain NA; Tesfay ST; Scott DJ
    Surgery; 2012 Sep; 152(3):477-88. PubMed ID: 22938907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proficiency training on a virtual reality robotic surgical skills curriculum.
    Bric J; Connolly M; Kastenmeier A; Goldblatt M; Gould JC
    Surg Endosc; 2014 Dec; 28(12):3343-8. PubMed ID: 24946742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laparoscopic skills training using inexpensive box trainers: which exercises to choose when constructing a validated training course.
    Schreuder HW; van den Berg CB; Hazebroek EJ; Verheijen RH; Schijven MP
    BJOG; 2011 Dec; 118(13):1576-84. PubMed ID: 21981275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a virtual reality-based robotic surgical skills curriculum.
    Connolly M; Seligman J; Kastenmeier A; Goldblatt M; Gould JC
    Surg Endosc; 2014 May; 28(5):1691-4. PubMed ID: 24380993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool.
    Ramos P; Montez J; Tripp A; Ng CK; Gill IS; Hung AJ
    BJU Int; 2014 May; 113(5):836-42. PubMed ID: 24224500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fundamentals of Vaginal Surgery pilot study: developing, validating, and setting proficiency scores for a vaginal surgical skills simulation system.
    Schmidt PC; Fairchild PS; Fenner DE; Rooney DM
    Am J Obstet Gynecol; 2021 Nov; 225(5):558.e1-558.e11. PubMed ID: 34464583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload.
    Stefanidis D; Wang F; Korndorffer JR; Dunne JB; Scott DJ
    Surg Endosc; 2010 Feb; 24(2):377-82. PubMed ID: 19536599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology.
    Dulan G; Rege RV; Hogg DC; Gilberg-Fisher KK; Tesfay ST; Scott DJ
    Am J Surg; 2012 Apr; 203(4):535-9. PubMed ID: 22326049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Certification pass rate of 100% for fundamentals of laparoscopic surgery skills after proficiency-based training.
    Scott DJ; Ritter EM; Tesfay ST; Pimentel EA; Nagji A; Fried GM
    Surg Endosc; 2008 Aug; 22(8):1887-93. PubMed ID: 18270774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favored by more surgeons compared with laparoscopy.
    Stefanidis D; Hope WW; Scott DJ
    Surg Endosc; 2011 Jul; 25(7):2141-6. PubMed ID: 21184110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries.
    Lee GI; Lee MR; Clanton T; Sutton E; Park AE; Marohn MR
    Surg Endosc; 2014 Feb; 28(2):456-65. PubMed ID: 24196542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond task time: automated measurement augments fundamentals of laparoscopic skills methodology.
    Kowalewski TM; White LW; Lendvay TS; Jiang IS; Sweet R; Wright A; Hannaford B; Sinanan MN
    J Surg Res; 2014 Dec; 192(2):329-38. PubMed ID: 25108691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.