These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22350236)

  • 81. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Robotic general surgery: current practice, evidence, and perspective.
    Jung M; Morel P; Buehler L; Buchs NC; Hagen ME
    Langenbecks Arch Surg; 2015 Apr; 400(3):283-92. PubMed ID: 25854502
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A novel surgical robot design: minimizing the operating envelope within the sterile field.
    Dachs GW; Peine WJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1505-8. PubMed ID: 17946897
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.
    Tsekos NV; Khanicheh A; Christoforou E; Mavroidis C
    Annu Rev Biomed Eng; 2007; 9():351-87. PubMed ID: 17439358
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Robotic surgery for cancer.
    Ohuchida K; Hashizume M
    Cancer J; 2013; 19(2):130-2. PubMed ID: 23528720
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Towards an in vivo wireless mobile robot for surgical assistance.
    Hawks JA; Rentschler ME; Redden L; Infanger R; Dumpert J; Farritor S; Oleynikov D; Platt SR
    Stud Health Technol Inform; 2008; 132():153-8. PubMed ID: 18391277
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Compact forceps manipulator using friction wheel mechanism and gimbals mechanism for laparoscopic surgery.
    Suzuki T; Katayama Y; Kobayashi E; Sakuma I
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):81-8. PubMed ID: 16685946
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Human factors design for intuitive operation of a low-cost, image-guided, tele-robotic biopsy assistant.
    Hanumara NC; Walsh CJ; Slocum AH; Gupta R; Shepard JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1257-60. PubMed ID: 18002191
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Flexible robotics: a new paradigm.
    Aron M; Haber GP; Desai MM; Gill IS
    Curr Opin Urol; 2007 May; 17(3):151-5. PubMed ID: 17414511
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New technologies in robotic surgery: the Korean experience.
    Tuliao PH; Kim SW; Rha KH
    Curr Opin Urol; 2014 Jan; 24(1):111-7. PubMed ID: 24247172
    [TBL] [Abstract][Full Text] [Related]  

  • 94. [Minimal invasive surgery--MicroSurge--an innovative robotics system].
    Zentralbl Chir; 2009 Sep; 134(5):397-400. PubMed ID: 19795345
    [No Abstract]   [Full Text] [Related]  

  • 95. Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER).
    Ho KY; Phee SJ; Shabbir A; Low SC; Huynh VA; Kencana AP; Yang K; Lomanto D; So BY; Wong YY; Chung SC
    Gastrointest Endosc; 2010 Sep; 72(3):593-9. PubMed ID: 20646698
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Enhancement of a master-slave robotic system for natural orifice transluminal endoscopic surgery.
    Sun Z; Ang RY; Lim EW; Wang Z; Ho KY; Phee SJ
    Ann Acad Med Singap; 2011 May; 40(5):223-30. PubMed ID: 21678013
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mentoring console improves collaboration and teaching in surgical robotics.
    Hanly EJ; Miller BE; Kumar R; Hasser CJ; Coste-Maniere E; Talamini MA; Aurora AA; Schenkman NS; Marohn MR
    J Laparoendosc Adv Surg Tech A; 2006 Oct; 16(5):445-51. PubMed ID: 17004866
    [TBL] [Abstract][Full Text] [Related]  

  • 98. [The foundations of computer assisted surgery].
    Langlotz F; Nolte LP; Tannast M
    Orthopade; 2006 Oct; 35(10):1032-7. PubMed ID: 16924446
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A tactile feedback system for robotic surgery.
    Culjat MO; King CH; Franco ML; Lewis CE; Bisley JW; Dutson EP; Grundfest WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1930-4. PubMed ID: 19163068
    [TBL] [Abstract][Full Text] [Related]  

  • 100. [A New Micro-traumatic Laparoscopic Surgery Robot System].
    Su M; Wang J; Li Z; Luo Z; Yuan S; Chen G; Liao Z; He C
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 May; 43(3):165-169. PubMed ID: 31184070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.