These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22350265)

  • 1. The connection between GRKs and various signaling pathways involved in diabetic nephropathy.
    Wang FL; Tang LQ; Wei W
    Mol Biol Rep; 2012 Jul; 39(7):7717-26. PubMed ID: 22350265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management.
    Tang G; Li S; Zhang C; Chen H; Wang N; Feng Y
    Acta Pharm Sin B; 2021 Sep; 11(9):2749-2767. PubMed ID: 34589395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of ubiquitination and sumoylation in diabetic nephropathy.
    Gao C; Huang W; Kanasaki K; Xu Y
    Biomed Res Int; 2014; 2014():160692. PubMed ID: 24991536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced TGF-beta/Smad signaling in the early stage of diabetic nephropathy is independent of the AT1a receptor.
    Okazaki Y; Yamasaki Y; Uchida HA; Okamoto K; Satoh M; Maruyama K; Maeshima Y; Sugiyama H; Sugaya T; Kashihara N; Makino H
    Clin Exp Nephrol; 2007 Mar; 11(1):77-87. PubMed ID: 17385003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of G protein-coupled receptor kinases in the pathology of malignant tumors.
    Sun WY; Wu JJ; Peng WT; Sun JC; Wei W
    Acta Pharmacol Sin; 2018 Nov; 39(11):1699-1705. PubMed ID: 29921886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of MicroRNA in the Pathogenesis of Diabetic Nephropathy.
    Szostak J; Gorący A; Durys D; Dec P; Modrzejewski A; Pawlik A
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renin Angiotensin Aldosterone System (RAAS): its biology and drug targets for treating diabetic nephropathy.
    Zain M; Awan FR
    Pak J Pharm Sci; 2014 Sep; 27(5):1379-91. PubMed ID: 25176370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis.
    Mathew R; Futterweit S; Valderrama E; Tarectecan AA; Bylander JE; Bond JS; Trachtman H
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F911-21. PubMed ID: 15942051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy.
    Toyoda M; Suzuki D; Honma M; Uehara G; Sakai T; Umezono T; Sakai H
    Kidney Int; 2004 Sep; 66(3):1107-14. PubMed ID: 15327405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular basis of diabetic nephropathy: II. The transforming growth factor-beta system and diabetic nephropathy lesions in type 1 diabetes.
    Huang C; Kim Y; Caramori ML; Fish AJ; Rich SS; Miller ME; Russell GB; Mauer M
    Diabetes; 2002 Dec; 51(12):3577-81. PubMed ID: 12453917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in pharmacotherapy for diabetic nephropathy: current perspectives and future directions.
    Balakumar P; Arora MK; Ganti SS; Reddy J; Singh M
    Pharmacol Res; 2009 Jul; 60(1):24-32. PubMed ID: 19427582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic nephropathy: where hemodynamics meets metabolism.
    Forbes JM; Fukami K; Cooper ME
    Exp Clin Endocrinol Diabetes; 2007 Feb; 115(2):69-84. PubMed ID: 17318765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of renal renin-angiotensin system in mouse diabetic nephropathy.
    Tamura J; Konno A; Hashimoto Y; Kon Y
    Jpn J Vet Res; 2005 Aug; 53(1-2):13-26. PubMed ID: 16190318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on protein kinase C-beta inhibition on glomerular vascular endothelial growth factor expression and endothelial cells in advanced experimental diabetic nephropathy.
    Kelly DJ; Buck D; Cox AJ; Zhang Y; Gilbert RE
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F565-74. PubMed ID: 17522264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid.
    Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM
    J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment.
    Yarahmadi A; Shahrokhi SZ; Mostafavi-Pour Z; Azarpira N
    Biochem Pharmacol; 2021 Jul; 189():114301. PubMed ID: 33203517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathological role of the ubiquitination pathway in diabetic nephropathy.
    Pontrelli P; Oranger A; Barozzino M; Conserva F; Papale M; Gesualdo L
    Minerva Med; 2018 Feb; 109(1):53-67. PubMed ID: 28974087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperglycemia to nephropathy via transforming growth factor beta.
    Garud MS; Kulkarni YA
    Curr Diabetes Rev; 2014 May; 10(3):182-9. PubMed ID: 24919657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of Gprc5a Promotes Development of Diabetic Nephropathy.
    Ma X; Schwarz A; Sevilla SZ; Levin A; Hultenby K; Wernerson A; Lal M; Patrakka J
    J Am Soc Nephrol; 2018 Jun; 29(6):1679-1689. PubMed ID: 29636387
    [No Abstract]   [Full Text] [Related]  

  • 20. TGF-Beta as a Master Regulator of Diabetic Nephropathy.
    Wang L; Wang HL; Liu TT; Lan HY
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.