These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22350290)

  • 1. Genetic engineering of crop plants for fungal resistance: role of antifungal genes.
    Ceasar SA; Ignacimuthu S
    Biotechnol Lett; 2012 Jun; 34(6):995-1002. PubMed ID: 22350290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.
    Wally O; Punja ZK
    GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi.
    Balasubramanian V; Vashisht D; Cletus J; Sakthivel N
    Biotechnol Lett; 2012 Nov; 34(11):1983-90. PubMed ID: 22850791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic expression of plant chitinases to enhance disease resistance.
    Cletus J; Balasubramanian V; Vashisht D; Sakthivel N
    Biotechnol Lett; 2013 Nov; 35(11):1719-32. PubMed ID: 23794096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering plants with increased disease resistance: what are we going to express?
    Gurr SJ; Rushton PJ
    Trends Biotechnol; 2005 Jun; 23(6):275-82. PubMed ID: 15922079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase).
    Amian AA; Papenbrock J; Jacobsen HJ; Hassan F
    GM Crops; 2011; 2(2):104-9. PubMed ID: 21971070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors.
    de Jonge R; Bolton MD; Thomma BP
    Curr Opin Plant Biol; 2011 Aug; 14(4):400-6. PubMed ID: 21454120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of Pseudomonas bacteria in induced systemic resistance in plants (review).
    Jankiewicz U; Kołtonowicz M
    Prikl Biokhim Mikrobiol; 2012; 48(3):276-81. PubMed ID: 22834297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.
    Allen A; Islamovic E; Kaur J; Gold S; Shah D; Smith TJ
    Plant Biotechnol J; 2011 Oct; 9(8):857-64. PubMed ID: 21303448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide.
    Li HP; Zhang JB; Shi RP; Huang T; Fischer R; Liao YC
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1242-8. PubMed ID: 18700828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial phytoprotectants and fungal pathogens: a commentary.
    Osbourn AE
    Fungal Genet Biol; 1999 Apr; 26(3):163-8. PubMed ID: 10361030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant science: The chestnut resurrection.
    Thompson H
    Nature; 2012 Oct; 490(7418):22-3. PubMed ID: 23038446
    [No Abstract]   [Full Text] [Related]  

  • 13. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco.
    Yevtushenko DP; Romero R; Forward BS; Hancock RE; Kay WW; Misra S
    J Exp Bot; 2005 Jun; 56(416):1685-95. PubMed ID: 15863447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi.
    Knecht K; Seyffarth M; Desel C; Thurau T; Sherameti I; Lou B; Oelmüller R; Cai D
    Mol Plant Microbe Interact; 2010 Apr; 23(4):446-57. PubMed ID: 20192832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field.
    Brunner S; Hurni S; Herren G; Kalinina O; von Burg S; Zeller SL; Schmid B; Winzeler M; Keller B
    Plant Biotechnol J; 2011 Oct; 9(8):897-910. PubMed ID: 21438988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus).
    Jia Z; Gou J; Sun Y; Yuan L; Tang Q; Yang X; Pei Y; Luo K
    Tree Physiol; 2010 Dec; 30(12):1599-605. PubMed ID: 21084346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering virus resistance using a modified potato gene.
    Cavatorta J; Perez KW; Gray SM; Van Eck J; Yeam I; Jahn M
    Plant Biotechnol J; 2011 Dec; 9(9):1014-21. PubMed ID: 21668622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat puroindolines enhance fungal disease resistance in transgenic rice.
    Krishnamurthy K; Balconi C; Sherwood JE; Giroux MJ
    Mol Plant Microbe Interact; 2001 Oct; 14(10):1255-60. PubMed ID: 11605965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within.
    Fan Z; Yuan L
    Plant Biotechnol J; 2010 Apr; 8(3):308-15. PubMed ID: 20070871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.