These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22350303)

  • 1. Genetic disorders of phosphate regulation.
    Gattineni J; Baum M
    Pediatr Nephrol; 2012 Sep; 27(9):1477-87. PubMed ID: 22350303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin COOH-terminal hydrolase L1 deletion is associated with urinary α-klotho deficiency and perturbed phosphate homeostasis.
    Boisvert NC; Holterman CE; Gutsol A; Coulombe J; Pan W; Alexander RT; Gray DA; Kennedy CR
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F353-F363. PubMed ID: 29667913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,25-Dihydroxyvitamin D Maintains Brush Border Membrane NaPi2a and Attenuates Phosphaturia in Hyp Mice.
    Martins JS; Liu ES; Sneddon WB; Friedman PA; Demay MB
    Endocrinology; 2019 Oct; 160(10):2204-2214. PubMed ID: 31237611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tmem174, a regulator of phosphate transporter prevents hyperphosphatemia.
    Sasaki S; Shiozaki Y; Hanazaki A; Koike M; Tanifuji K; Uga M; Kawahara K; Kaneko I; Kawamoto Y; Wiriyasermkul P; Hasegawa T; Amizuka N; Miyamoto KI; Nagamori S; Kanai Y; Segawa H
    Sci Rep; 2022 Apr; 12(1):6353. PubMed ID: 35428804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi).
    Jacquillet G; Unwin RJ
    Pflugers Arch; 2019 Jan; 471(1):83-98. PubMed ID: 30393837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis].
    Nabeshima Y
    Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.
    Nakatani T; Ohnishi M; Razzaque MS
    FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overview of the FGF23-Klotho axis.
    Kuro-o M
    Pediatr Nephrol; 2010 Apr; 25(4):583-90. PubMed ID: 19626341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorders of phosphate homeostasis and tissue mineralisation.
    Bergwitz C; Jüppner H
    Endocr Dev; 2009; 16():133-56. PubMed ID: 19494665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis.
    Marks J
    Pflugers Arch; 2019 Jan; 471(1):165-173. PubMed ID: 30343332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling.
    Ide N; Olauson H; Sato T; Densmore MJ; Wang H; Hanai JI; Larsson TE; Lanske B
    Kidney Int; 2016 Aug; 90(2):348-362. PubMed ID: 27292223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update.
    Wagner CA; Rubio-Aliaga I; Hernando N
    Pediatr Nephrol; 2019 Apr; 34(4):549-559. PubMed ID: 29275531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gy mice: responses to phosphate deprivation.
    Tenenhouse HS; Meyer RA; Mandla S; Meyer MH; Gray RW
    Endocrinology; 1992 Jul; 131(1):51-6. PubMed ID: 1612032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Endocrine control of serum phosphate: from the discoveries of phosphatonins to novel therapies].
    Linglart A; Chaussain C
    Ann Endocrinol (Paris); 2016 Oct; 77 Suppl 1():S36-S42. PubMed ID: 28645356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Disorders of phosphate metabolism].
    Fukumoto S
    Rinsho Byori; 2010 Mar; 58(3):225-31. PubMed ID: 20408440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation and function of phosphate in the human body.
    Takeda E; Taketani Y; Sawada N; Sato T; Yamamoto H
    Biofactors; 2004; 21(1-4):345-55. PubMed ID: 15630224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone.
    Lanzano L; Lei T; Okamura K; Giral H; Caldas Y; Masihzadeh O; Gratton E; Levi M; Blaine J
    Am J Physiol Cell Physiol; 2011 Oct; 301(4):C850-61. PubMed ID: 21593452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Causes of Hypo- and Hyperphosphatemia in Humans.
    Koumakis E; Cormier C; Roux C; Briot K
    Calcif Tissue Int; 2021 Jan; 108(1):41-73. PubMed ID: 32285168
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.