BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22350317)

  • 1. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.
    Kuo LC; Wu RY; Lee KT
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1181-8. PubMed ID: 22350317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto.
    Kuo LC; Cheng WY; Wu RY; Huang CJ; Lee KT
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):314-20. PubMed ID: 16715232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression, and characterization of two beta-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto.
    Kuo LC; Lee KT
    J Agric Food Chem; 2008 Jan; 56(1):119-25. PubMed ID: 18069788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet.
    Toda T; Uesugi T; Hirai K; Nukaya H; Tsuji K; Ishida H
    Biol Pharm Bull; 1999 Nov; 22(11):1193-201. PubMed ID: 10598027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor.
    Liu CT; Erh MH; Lin SP; Lo KY; Chen KI; Cheng KC
    J Sci Food Agric; 2016 Aug; 96(11):3779-86. PubMed ID: 26676892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High production of succinyl isoflavone glycosides by Bacillus licheniformis ZSP01 resting cells in aqueous miscible organic medium.
    Zhang S; Chen G; Chu J; Wu B; He B
    Biotechnol Appl Biochem; 2015; 62(2):255-9. PubMed ID: 24919721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation.
    Hu Y; Ge C; Yuan W; Zhu R; Zhang W; Du L; Xue J
    J Sci Food Agric; 2010 May; 90(7):1194-202. PubMed ID: 20394001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of 14 Isoflavone Isomers in Natto by UPLC-ESI-MS/MS and Antioxidation and Antiglycation Profiles.
    Xiang A; Wang J; Xie B; Hu K; Chen M; Sun Z
    Foods; 2022 Jul; 11(15):. PubMed ID: 35892813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers.
    Chen KI; Lo YC; Su NW; Chou CC; Cheng KC
    J Agric Food Chem; 2012 Dec; 60(51):12540-6. PubMed ID: 23190054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures.
    Wu CH; Chou CC
    J Agric Food Chem; 2009 Nov; 57(22):10695-700. PubMed ID: 19919117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of isoflavone profiles in a fermented soy food with almond powder.
    Park M; Jeong MK; Kim M; Lee J
    J Food Sci; 2012 Jan; 77(1):C128-34. PubMed ID: 22182181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako.
    Hosoda K; Furuta T; Yokokawa A; Ogura K; Hiratsuka A; Ishii K
    Drug Metab Dispos; 2008 Aug; 36(8):1485-95. PubMed ID: 18443032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism.
    Hsu C; Wu BY; Chang YC; Chang CF; Chiou TY; Su NW
    J Agric Food Chem; 2018 Jan; 66(1):127-137. PubMed ID: 29231720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk.
    Hati S; Vij S; Singh BP; Mandal S
    J Sci Food Agric; 2015 Jan; 95(1):216-20. PubMed ID: 24838442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation.
    Ding WK; Shah NP
    J Food Sci; 2010 Apr; 75(3):M140-9. PubMed ID: 20492303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species.
    Lim YJ; Lim B; Kim HY; Kwon SJ; Eom SH
    Enzyme Microb Technol; 2020 Jan; 132():109394. PubMed ID: 31731960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides.
    Kim BN; Yeom SJ; Kim YS; Oh DK
    Biotechnol Lett; 2012 Jan; 34(1):125-9. PubMed ID: 21898127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.