These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22350335)

  • 1. Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues.
    Huang L; Wang P; Tian J; Jiang H; Wu N; Yang P; Yao B; Fan Y
    Biotechnol Lett; 2012 Jun; 34(6):1115-21. PubMed ID: 22350335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method.
    Tian J; Wang P; Huang L; Chu X; Wu N; Fan Y
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2997-3006. PubMed ID: 23001009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency.
    Xie J; Zhao Y; Zhang H; Liu Z; Lu Z
    Lett Appl Microbiol; 2014 Jan; 58(1):53-9. PubMed ID: 24010722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved efficiency of a novel methyl parathion hydrolase using consensus approach.
    Liu XY; Chen FF; Li CX; Luo XJ; Chen Q; Bai YP; Xu JH
    Enzyme Microb Technol; 2016 Nov; 93-94():11-17. PubMed ID: 27702470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the thermostability of a methyl parathion hydrolase by adding the ionic bond on protein surface.
    Su Y; Tian J; Wang P; Chu X; Liu G; Wu N; Fan Y
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):989-97. PubMed ID: 21728027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the properties of methyl parathion hydrolase from Pseudomonas sp. WBC-3].
    Chu X; Zhang X; Chen Y; Liu H; Song D
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):453-9. PubMed ID: 16276919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the protein family of methyl parathion hydrolase.
    Tian J; Guo X; Chu X; Wu N; Guo J; Yao B
    Int J Bioinform Res Appl; 2008; 4(2):201-10. PubMed ID: 18490263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3.
    Dong YJ; Bartlam M; Sun L; Zhou YF; Zhang ZP; Zhang CG; Rao Z; Zhang XE
    J Mol Biol; 2005 Oct; 353(3):655-63. PubMed ID: 16181636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the secretion of a methyl parathion hydrolase in Pichia pastoris by modifying its N-terminal sequence.
    Wang P; Huang L; Jiang H; Tian J; Chu X; Wu N
    PLoS One; 2014; 9(5):e96974. PubMed ID: 24806460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides.
    Ekkhunnatham A; Jongsareejit B; Yamkunthong W; Wichitwechkarn J
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1739-46. PubMed ID: 22805956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic surface-display of methyl parathion hydrolase on Yarrowia lipolytica for removal of methyl parathion in water.
    Wang XX; Chi Z; Ru SG; Chi ZM
    Biodegradation; 2012 Sep; 23(5):763-74. PubMed ID: 22534797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species.
    Bhat N; Nutho B; Hanpaibool C; Hadsadee S; Vangnai A; Rungrotmongkol T
    Proteins; 2024 Jan; 92(1):96-105. PubMed ID: 37646471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and preliminary X-ray studies of methyl parathion hydrolase from Pseudomonas sp. WBC-3.
    Sun L; Dong Y; Zhou Y; Yang M; Zhang C; Rao Z; Zhang XE
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):954-6. PubMed ID: 15103151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.
    Ng TK; Gahan LR; Schenk G; Ollis DL
    Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2.
    Chu XY; Tian J; Wu NF; Fan YL
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):125-31. PubMed ID: 20607231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional effects of amino acid substitutions within the large binding pocket of the phosphotriesterase OpdA from Agrobacterium sp. P230.
    Horne I; Qiu X; Ollis DL; Russell RJ; Oakeshott JG
    FEMS Microbiol Lett; 2006 Jun; 259(2):187-94. PubMed ID: 16734778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase.
    Li Y; Yang H; Xu F
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6537-6545. PubMed ID: 29948121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the acidic stability of Staphylococcus aureus α-acetolactate decarboxylase in Bacillus subtilis by changing basic residues to acidic residues.
    Zhang X; Rao Z; Li J; Zhou J; Yang T; Xu M; Bao T; Zhao X
    Amino Acids; 2015 Apr; 47(4):707-17. PubMed ID: 25543264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.