These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22350422)

  • 1. Improved predictive ability of climate-human-behaviour interactions with modifications to the COMFA outdoor energy budget model.
    Vanos JK; Warland JS; Gillespie TJ; Kenny NA
    Int J Biometeorol; 2012 Nov; 56(6):1065-74. PubMed ID: 22350422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity.
    Kenny NA; Warland JS; Brown RD; Gillespie TG
    Int J Biometeorol; 2009 Sep; 53(5):429-41. PubMed ID: 19396619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii).
    Wolf BO; Wooden KM; Walsberg GE
    J Exp Biol; 2000 Feb; 203(Pt 4):803-11. PubMed ID: 10648222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of air temperature for thermal comfort of people in outdoor environments.
    Huang J
    Int J Biometeorol; 2007 May; 51(5):375-82. PubMed ID: 17219153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of wind and human movement on the heat and vapour transfer properties of clothing.
    Parsons KC; Havenith G; Holmér I; Nilsson H; Malchaire J
    Ann Occup Hyg; 1999 Jul; 43(5):347-52. PubMed ID: 10481634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity.
    Kenny NA; Warland JS; Brown RD; Gillespie TG
    Int J Biometeorol; 2009 Sep; 53(5):415-28. PubMed ID: 19396470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of effective wet bulb globe temperature for vapor impermeable protective clothing.
    Sakoi T; Mochida T; Kurazumi Y; Sawada SI; Horiba Y; Kuwabara K
    J Therm Biol; 2018 Jan; 71():10-16. PubMed ID: 29301678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wind-chill equations predicting whole-body heat loss for a range of typical civilian outdoor clothing ensembles.
    Wyon DP
    Scand J Work Environ Health; 1989; 15 Suppl 1():76-83. PubMed ID: 2609124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of wetted clothing to body energy exchange and heat stress.
    Elson J; Eckels S
    J Therm Biol; 2018 Dec; 78():343-351. PubMed ID: 30509656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of clothing insulation for movement and wind effects, a meta-analysis.
    Havenith G; Nilsson HO
    Eur J Appl Physiol; 2004 Sep; 92(6):636-40. PubMed ID: 15138827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sweat rate prediction equations for outdoor exercise with transient solar radiation.
    Gonzalez RR; Cheuvront SN; Ely BR; Moran DS; Hadid A; Endrusick TL; Sawka MN
    J Appl Physiol (1985); 2012 Apr; 112(8):1300-10. PubMed ID: 22241058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the wind cooling potential on outdoor thermal comfort in selected Iranian climate types.
    Roshan G; Moghbel M; Attia S
    J Therm Biol; 2020 Aug; 92():102660. PubMed ID: 32888564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified wind chill temperatures determined by a whole body thermoregulation model and human-based facial convective coefficients.
    Shabat YB; Shitzer A; Fiala D
    Int J Biometeorol; 2014 Aug; 58(6):1007-15. PubMed ID: 23812421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue and external insulation estimates and their effects on prediction of energy requirements and of heat stress.
    Berman A
    J Dairy Sci; 2004 May; 87(5):1400-12. PubMed ID: 15290987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.
    Henriksson O; Lundgren JP; Kuklane K; Holmér I; Bjornstig U
    Prehosp Disaster Med; 2009; 24(5):408-15. PubMed ID: 20066643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain.
    Rodríguez Algeciras JA; Matzarakis A
    Int J Biometeorol; 2016 Aug; 60(8):1261-70. PubMed ID: 26694490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UTCI-clothing model.
    Havenith G; Fiala D; Błazejczyk K; Richards M; Bröde P; Holmér I; Rintamaki H; Benshabat Y; Jendritzky G
    Int J Biometeorol; 2012 May; 56(3):461-70. PubMed ID: 21607531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological significance of hydrophilic and hydrophobic textile materials during intermittent exercise in humans under the influence of warm ambient temperature with and without wind.
    Kwon A; Kato M; Kawamura H; Yanai Y; Tokura H
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):487-93. PubMed ID: 9840402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded prediction equations of human sweat loss and water needs.
    Gonzalez RR; Cheuvront SN; Montain SJ; Goodman DA; Blanchard LA; Berglund LG; Sawka MN
    J Appl Physiol (1985); 2009 Aug; 107(2):379-88. PubMed ID: 19407259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.