BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22350471)

  • 1. Intracellular iron trafficking: role of cytosolic ligands.
    Shvartsman M; Ioav Cabantchik Z
    Biometals; 2012 Aug; 25(4):711-23. PubMed ID: 22350471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence.
    Shvartsman M; Fibach E; Cabantchik ZI
    Biochem J; 2010 Jul; 429(1):185-93. PubMed ID: 20408812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II).
    Breuer W; Epsztejn S; Cabantchik ZI
    J Biol Chem; 1995 Oct; 270(41):24209-15. PubMed ID: 7592626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine.
    Colell A; García-Ruiz C; Morales A; Ballesta A; Ookhtens M; Rodés J; Kaplowitz N; Fernández-Checa JC
    Hepatology; 1997 Sep; 26(3):699-708. PubMed ID: 9303501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron speciation in the cytosol: an overview.
    Hider RC; Kong X
    Dalton Trans; 2013 Mar; 42(9):3220-9. PubMed ID: 23232973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic capacity regulates iron homeostasis in endothelial cells.
    Carraway MS; Suliman HB; Madden MC; Piantadosi CA; Ghio AJ
    Free Radic Biol Med; 2006 Dec; 41(11):1662-9. PubMed ID: 17145554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane.
    Pamp K; Kerkweg U; Korth HG; Homann F; Rauen U; Sustmann R; de Groot H; Petrat F
    Biochimie; 2008 Oct; 90(10):1591-601. PubMed ID: 18627785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron deprivation induces apoptosis via mitochondrial changes related to Bax translocation.
    Koc M; Nad'ová Z; Truksa J; Ehrlichová M; Kovár J
    Apoptosis; 2005 Mar; 10(2):381-93. PubMed ID: 15843899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: the effect of transferrin concentration, chelators, and metabolic probes on transferrin and iron uptake.
    Richardson DR; Baker E
    J Cell Physiol; 1994 Oct; 161(1):160-8. PubMed ID: 7929602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism: biological and clinical implications.
    Shvartsman M; Kikkeri R; Shanzer A; Cabantchik ZI
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1383-94. PubMed ID: 17670894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase.
    Lall MM; Ferrell J; Nagar S; Fleisher LN; McGahan MC
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):310-9. PubMed ID: 18172108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells.
    Garrick LM; Dolan KG; Romano MA; Garrick MD
    J Cell Physiol; 1999 Mar; 178(3):349-58. PubMed ID: 9989781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular labile iron.
    Breuer W; Shvartsman M; Cabantchik ZI
    Int J Biochem Cell Biol; 2008; 40(3):350-4. PubMed ID: 17451993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide.
    Dhanasekaran A; Kotamraju S; Karunakaran C; Kalivendi SV; Thomas S; Joseph J; Kalyanaraman B
    Free Radic Biol Med; 2005 Sep; 39(5):567-83. PubMed ID: 16085176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labile Iron Pool of Isolated
    Brawley HN; Kreinbrink AC; Hierholzer JD; Vali SW; Lindahl PA
    J Am Chem Soc; 2023 Feb; 145(4):2104-2117. PubMed ID: 36661842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of endocytic pathways in cellular uptake of plasma non-transferrin iron.
    Sohn YS; Ghoti H; Breuer W; Rachmilewitz E; Attar S; Weiss G; Cabantchik ZI
    Haematologica; 2012 May; 97(5):670-8. PubMed ID: 22180428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.
    Gout E; Rébeillé F; Douce R; Bligny R
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4560-7. PubMed ID: 25313036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of ATP in mammalian cells.
    Manfredi G; Yang L; Gajewski CD; Mattiazzi M
    Methods; 2002 Apr; 26(4):317-26. PubMed ID: 12054922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of iron from transferrin by isolated hepatocytes. The effect of cellular energy metabolism on the intracellular distribution of iron and transferrin.
    Thorstensen K; Romslo I
    Scand J Clin Lab Invest; 1987 Dec; 47(8):837-46. PubMed ID: 3433005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.