BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22350535)

  • 1. Energy management that generates terrain following versus apex-preserving hopping in man and machine.
    Kalveram KT; Haeufle DF; Seyfarth A; Grimmer S
    Biol Cybern; 2012 Jan; 106(1):1-13. PubMed ID: 22350535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations.
    Shemer N; Degani A
    Bioinspir Biomim; 2017 Aug; 12(4):046011. PubMed ID: 28524066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of intrinsic muscle properties for stable hopping--stability is achieved by the force-velocity relation.
    Haeufle DF; Grimmer S; Seyfarth A
    Bioinspir Biomim; 2010 Mar; 5(1):16004. PubMed ID: 20185859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fundamental mechanism of legged locomotion with hip torque and leg damping.
    Shen ZH; Seipel JE
    Bioinspir Biomim; 2012 Dec; 7(4):046010. PubMed ID: 22989956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy efficient hopping with Hill-type muscle properties on segmented legs.
    Rosendo A; Iida F
    Bioinspir Biomim; 2016 Apr; 11(3):036002. PubMed ID: 27070710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2007 Apr; 210(Pt 7):1255-65. PubMed ID: 17371924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-like hopping in machines : Feedback- versus feed-forward-controlled motions.
    Oehlke J; Beckerle P; Seyfarth A; Sharbafi MA
    Biol Cybern; 2019 Jun; 113(3):227-238. PubMed ID: 30370464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies.
    McGowan CP; Baudinette RV; Usherwood JR; Biewener AA
    J Exp Biol; 2005 Jul; 208(Pt 14):2741-51. PubMed ID: 16000543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.
    Bobbert MF; Richard Casius LJ
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1516-29. PubMed ID: 21502123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of swing leg movement on running stability.
    Knuesel H; Geyer H; Seyfarth A
    Hum Mov Sci; 2005 Aug; 24(4):532-43. PubMed ID: 16213046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo mechanical properties of the human Achilles tendon during one-legged hopping.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Dec; 208(Pt 24):4715-25. PubMed ID: 16326953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding muscle energetics in locomotion: new modeling and experimental approaches.
    Umberger BR; Rubenson J
    Exerc Sport Sci Rev; 2011 Apr; 39(2):59-67. PubMed ID: 21206279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential design for hopping in two species of wallabies.
    McGowan CP; Baudinette RV; Biewener AA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):151-8. PubMed ID: 16861021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).
    Nagano A; Umberger BR; Marzke MW; Gerritsen KG
    Am J Phys Anthropol; 2005 Jan; 126(1):2-13. PubMed ID: 15386246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.