These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Miteva M; Keusekotten K; Hofmann K; Praefcke GJ; Dohmen RJ Subcell Biochem; 2010; 54():195-214. PubMed ID: 21222284 [TBL] [Abstract][Full Text] [Related]
3. Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Sriramachandran AM; Meyer-Teschendorf K; Pabst S; Ulrich HD; Gehring NH; Hofmann K; Praefcke GJK; Dohmen RJ Nat Commun; 2019 Aug; 10(1):3678. PubMed ID: 31417085 [TBL] [Abstract][Full Text] [Related]
4. Methods to study SUMO dynamics in yeast. Pabst S; Döring LM; Petreska N; Dohmen RJ Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052 [TBL] [Abstract][Full Text] [Related]
5. SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro. Parker JL; Ulrich HD Biochem J; 2014 Feb; 457(3):435-40. PubMed ID: 24224485 [TBL] [Abstract][Full Text] [Related]
6. Ubiquitin-dependent proteolytic control of SUMO conjugates. Uzunova K; Göttsche K; Miteva M; Weisshaar SR; Glanemann C; Schnellhardt M; Niessen M; Scheel H; Hofmann K; Johnson ES; Praefcke GJ; Dohmen RJ J Biol Chem; 2007 Nov; 282(47):34167-75. PubMed ID: 17728242 [TBL] [Abstract][Full Text] [Related]
7. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. González-Prieto R; Cuijpers SA; Kumar R; Hendriks IA; Vertegaal AC Cell Cycle; 2015; 14(12):1859-72. PubMed ID: 25895136 [TBL] [Abstract][Full Text] [Related]
9. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response. Køhler JB; Jørgensen ML; Beinoraité G; Thorsen M; Thon G PLoS One; 2013; 8(11):e80442. PubMed ID: 24265825 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms in SUMO conjugation. Varejão N; Lascorz J; Li Y; Reverter D Biochem Soc Trans; 2020 Feb; 48(1):123-135. PubMed ID: 31872228 [TBL] [Abstract][Full Text] [Related]
11. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Jalal D; Chalissery J; Hassan AH Nucleic Acids Res; 2017 Mar; 45(5):2242-2261. PubMed ID: 28115630 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S; Coste F; Prieu-Serandon P; Mance L; Gaudon V; Garnier N; Castaing B; Suskiewicz MJ J Biol Chem; 2023 Jul; 299(7):104870. PubMed ID: 37247759 [TBL] [Abstract][Full Text] [Related]
13. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z; Hecker CM; Scheschonka A; Betz H FEBS J; 2008 Jun; 275(12):3003-15. PubMed ID: 18492068 [TBL] [Abstract][Full Text] [Related]
14. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2. Her J; Jeong YY; Chung IK FEBS Lett; 2015 Oct; 589(21):3277-86. PubMed ID: 26450775 [TBL] [Abstract][Full Text] [Related]
15. Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. Mullen JR; Brill SJ J Biol Chem; 2008 Jul; 283(29):19912-21. PubMed ID: 18499666 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays. Eisenhardt N; Ilic D; Nagamalleswari E; Pichler A Methods Enzymol; 2019; 618():167-185. PubMed ID: 30850051 [TBL] [Abstract][Full Text] [Related]