These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22350953)

  • 41. HN(CA)N and HN(COCA)N experiments for assignment of large disordered proteins.
    Liu X; Yang D
    J Biomol NMR; 2013 Oct; 57(2):83-9. PubMed ID: 24052412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy.
    Eletsky A; Moreira O; Kovacs H; Pervushin K
    J Biomol NMR; 2003 Jun; 26(2):167-79. PubMed ID: 12766412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Longitudinal Spin Order Labeling on Multiple Quantum Coherences Enables NMR Analysis of Intrinsically Disordered Proteins at Ultrahigh Resolution.
    Im J; Lee K; Jung S; Kim E; Lee JH
    J Phys Chem Lett; 2021 Sep; 12(38):9315-9320. PubMed ID: 34543573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sparsely sampled high-resolution 4-D experiments for efficient backbone resonance assignment of disordered proteins.
    Wen J; Wu J; Zhou P
    J Magn Reson; 2011 Mar; 209(1):94-100. PubMed ID: 21277815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HA-detected experiments for the backbone assignment of intrinsically disordered proteins.
    Mäntylahti S; Aitio O; Hellman M; Permi P
    J Biomol NMR; 2010 Jul; 47(3):171-81. PubMed ID: 20437194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis.
    Kubáň V; Nováček J; Bumba L; Žídek L
    Biomol NMR Assign; 2015 Oct; 9(2):435-40. PubMed ID: 26138689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HNCAN pulse sequences for sequential backbone resonance assignment across proline residues in perdeuterated proteins.
    Löhr F; Pfeiffer S; Lin YJ; Hartleib J; Klimmek O; Rüterjans H
    J Biomol NMR; 2000 Dec; 18(4):337-46. PubMed ID: 11200528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy.
    Kehlet C; Bjerring M; Sivertsen AC; Kristensen T; Enghild JJ; Glaser SJ; Khaneja N; Nielsen NC
    J Magn Reson; 2007 Oct; 188(2):216-30. PubMed ID: 17681479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Górka M; Żerko S; Konrat R; Koźmiński W; Kurzbach D
    Biomol NMR Assign; 2020 Oct; 14(2):289-293. PubMed ID: 32583165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction.
    Rovnyak D; Frueh DP; Sastry M; Sun ZY; Stern AS; Hoch JC; Wagner G
    J Magn Reson; 2004 Sep; 170(1):15-21. PubMed ID: 15324754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Set of Efficient nD NMR Protocols for Resonance Assignments of Intrinsically Disordered Proteins.
    Wiedemann C; Bellstedt P; Häfner S; Herbst C; Bordusa F; Görlach M; Ohlenschläger O; Ramachandran R
    Chemphyschem; 2016 Jul; 17(13):1961-8. PubMed ID: 27061973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ADAPT-NMR 3.0: utilization of BEST-type triple-resonance NMR experiments to accelerate the process of data collection and assignment.
    Dashti H; Tonelli M; Markley JL
    J Biomol NMR; 2015 Jul; 62(3):247-52. PubMed ID: 26021595
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated NMR resonance assignment strategy for RNA via the phosphodiester backbone based on high-dimensional through-bond APSY experiments.
    Krähenbühl B; El Bakkali I; Schmidt E; Güntert P; Wider G
    J Biomol NMR; 2014 Jun; 59(2):87-93. PubMed ID: 24771326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of the carbonyl chemical shift to relieve degeneracies in triple-resonance assignment experiments.
    Sayers EW; Torchia DA
    J Magn Reson; 2001 Dec; 153(2):246-53. PubMed ID: 11740901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins.
    Theillet FX; Binolfi A; Liokatis S; Verzini S; Selenko P
    J Biomol NMR; 2011 Dec; 51(4):487-95. PubMed ID: 22008951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.
    Yuwen T; Skrynnikov NR
    J Magn Reson; 2014 Apr; 241():155-69. PubMed ID: 24120537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct amide
    Lends A; Ravotti F; Zandomeneghi G; Böckmann A; Ernst M; Meier BH
    J Biomol NMR; 2018 Oct; 72(1-2):69-78. PubMed ID: 30206780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins.
    Ding K; Gronenborn AM
    J Magn Reson; 2002 Jun; 156(2):262-8. PubMed ID: 12165262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.