BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22350991)

  • 1. The F-actin cortex in chromaffin granule dynamics and fusion: a minireview.
    Villanueva J; Torregrosa-Hetland CJ; García-Martínez V; del Mar Francés M; Viniegra S; Gutiérrez LM
    J Mol Neurosci; 2012 Oct; 48(2):323-7. PubMed ID: 22350991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. F-actin-myosin II inhibitors affect chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex.
    Villanueva J; Torres V; Torregrosa-Hetland CJ; Garcia-Martinez V; López-Font I; Viniegra S; Gutiérrez LM
    J Mol Neurosci; 2012 Oct; 48(2):328-38. PubMed ID: 22588981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular motors involved in chromaffin cell secretion.
    Rosé SD; Lejen T; Casaletti L; Larson RE; Pene TD; Trifaró JM
    Ann N Y Acad Sci; 2002 Oct; 971():222-31. PubMed ID: 12438122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells.
    Torregrosa-Hetland CJ; Villanueva J; Giner D; Lopez-Font I; Nadal A; Quesada I; Viniegra S; Expósito-Romero G; Gil A; Gonzalez-Velez V; Segura J; Gutiérrez LM
    J Cell Sci; 2011 Mar; 124(Pt 5):727-34. PubMed ID: 21303931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells.
    Giner D; López I; Villanueva J; Torres V; Viniegra S; Gutiérrez LM
    Neuroscience; 2007 May; 146(2):659-69. PubMed ID: 17395387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin and Myosin in Non-Neuronal Exocytosis.
    Miklavc P; Frick M
    Cells; 2020 Jun; 9(6):. PubMed ID: 32545391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells.
    Trifaró JM; Gasman S; Gutiérrez LM
    Acta Physiol (Oxf); 2008 Feb; 192(2):165-72. PubMed ID: 18021329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis.
    Amatore C; Arbault S; Bonifas I; Bouret Y; Erard M; Ewing AG; Sombers LA
    Biophys J; 2005 Jun; 88(6):4411-20. PubMed ID: 15792983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid vesicle replenishment after the immediately releasable pool exocytosis is tightly linked to fast endocytosis, and depends on basal calcium and cortical actin in chromaffin cells.
    Montenegro M; Bayonés L; Moya-Díaz J; Borassi C; Martín Toscani A; Gallo LI; Marengo FD
    J Neurochem; 2021 May; 157(4):1069-1085. PubMed ID: 33338257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
    Allersma MW; Bittner MA; Axelrod D; Holz RW
    Mol Biol Cell; 2006 May; 17(5):2424-38. PubMed ID: 16510523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells.
    Neco P; Giner D; del Mar Francés M; Viniegra S; Gutiérrez LM
    Eur J Neurosci; 2003 Aug; 18(4):733-42. PubMed ID: 12924999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exocytosis in neuroendocrine cells: new tasks for actin.
    Malacombe M; Bader MF; Gasman S
    Biochim Biophys Acta; 2006 Nov; 1763(11):1175-83. PubMed ID: 17034880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretory granules: and the last shall be first..
    Solimena M; Gerdes HH
    Trends Cell Biol; 2003 Aug; 13(8):399-402. PubMed ID: 12888291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting docking and tethering of secretory vesicles at the target membrane.
    Toonen RF; Kochubey O; de Wit H; Gulyas-Kovacs A; Konijnenburg B; Sørensen JB; Klingauf J; Verhage M
    EMBO J; 2006 Aug; 25(16):3725-37. PubMed ID: 16902411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells.
    Gutiérrez LM
    Int Rev Cell Mol Biol; 2012; 295():109-37. PubMed ID: 22449488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple roles for the actin cytoskeleton during regulated exocytosis.
    Porat-Shliom N; Milberg O; Masedunskas A; Weigert R
    Cell Mol Life Sci; 2013 Jun; 70(12):2099-121. PubMed ID: 22986507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells.
    Doreian BW; Fulop TG; Smith CB
    J Neurosci; 2008 Apr; 28(17):4470-8. PubMed ID: 18434525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Munc18-1 and its orthologs in modulation of cortical F-actin in chromaffin cells.
    Kurps J; de Wit H
    J Mol Neurosci; 2012 Oct; 48(2):339-46. PubMed ID: 22535313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective.
    Gutiérrez LM; Villanueva J
    Pflugers Arch; 2018 Jan; 470(1):181-186. PubMed ID: 28730385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.