These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22351054)

  • 41. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus.
    Dahlhaus R; Hines RM; Eadie BD; Kannangara TS; Hines DJ; Brown CE; Christie BR; El-Husseini A
    Hippocampus; 2010 Feb; 20(2):305-22. PubMed ID: 19437420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locally synchronized synaptic inputs.
    Takahashi N; Kitamura K; Matsuo N; Mayford M; Kano M; Matsuki N; Ikegaya Y
    Science; 2012 Jan; 335(6066):353-6. PubMed ID: 22267814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spine remodeling and synaptic modification.
    Wang XB; Zhou Q
    Mol Neurobiol; 2010 Feb; 41(1):29-41. PubMed ID: 20049655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dendritic spine morphogenesis and plasticity.
    Lippman J; Dunaevsky A
    J Neurobiol; 2005 Jul; 64(1):47-57. PubMed ID: 15884005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices.
    Stewart MG; Medvedev NI; Popov VI; Schoepfer R; Davies HA; Murphy K; Dallérac GM; Kraev IV; Rodríguez JJ
    Eur J Neurosci; 2005 Jun; 21(12):3368-78. PubMed ID: 16026474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glutamate receptor plasticity at excitatory synapses in the brain.
    Genoux D; Montgomery JM
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1058-63. PubMed ID: 17714094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cadherin activity is required for activity-induced spine remodeling.
    Okamura K; Tanaka H; Yagita Y; Saeki Y; Taguchi A; Hiraoka Y; Zeng LH; Colman DR; Miki N
    J Cell Biol; 2004 Dec; 167(5):961-72. PubMed ID: 15569714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity.
    Maiti P; Manna J; McDonald MP
    Neurosci Res; 2015 Jul; 96():1-13. PubMed ID: 25728560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutamate receptors regulate actin-based plasticity in dendritic spines.
    Fischer M; Kaech S; Wagner U; Brinkhaus H; Matus A
    Nat Neurosci; 2000 Sep; 3(9):887-94. PubMed ID: 10966619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease.
    Stefen H; Chaichim C; Power J; Fath T
    Neural Plast; 2016; 2016():2371970. PubMed ID: 27127658
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe.
    Izeddin I; Specht CG; Lelek M; Darzacq X; Triller A; Zimmer C; Dahan M
    PLoS One; 2011 Jan; 6(1):e15611. PubMed ID: 21264214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics.
    Kneussel M; Wagner W
    Nat Rev Neurosci; 2013 Apr; 14(4):233-47. PubMed ID: 23481482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Real time imaging of synaptic inputs].
    Kobayashi C; Takahashi N; Ikegaya Y
    Nihon Yakurigaku Zasshi; 2012 Jul; 140(1):19-23. PubMed ID: 22790228
    [No Abstract]   [Full Text] [Related]  

  • 54. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines.
    Robinson CM; Patel MR; Webb DJ
    F1000Res; 2016; 5():. PubMed ID: 27408691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of Synapse Structure and Function by Actin and Its Regulators.
    Gentile JE; Carrizales MG; Koleske AJ
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural remodeling of the synapse in response to physiological activity.
    Huntley GW; Benson DL; Colman DR
    Cell; 2002 Jan; 108(1):1-4. PubMed ID: 11792314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visualizing synapse formation and remodeling: recent advances in real-time imaging of CNS synapses.
    Umeda T; Okabe S
    Neurosci Res; 2001 Aug; 40(4):291-300. PubMed ID: 11463475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines.
    MacGillavry HD; Blanpied TA
    Curr Protoc Neurosci; 2013; 65(220):2.20.1-2.20.19. PubMed ID: 25429311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics, nanoscale organization, and function of synaptic adhesion molecules.
    Chamma I; Thoumine O
    Mol Cell Neurosci; 2018 Sep; 91():95-107. PubMed ID: 29673914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploiting volume electron microscopy to investigate structural plasticity and stability of the postsynaptic compartment of central synapses.
    Maiellano G; Scandella L; Francolini M
    Front Cell Neurosci; 2023; 17():1153593. PubMed ID: 37032841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.