These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22351054)

  • 61. Open Up to Make New Contacts: Caldendrin Senses Postsynaptic Calcium Influx to Dynamically Organize Dendritic Spines.
    Coleman A; Biederer T
    Neuron; 2018 Mar; 97(5):994-996. PubMed ID: 29518361
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Linking the synapse to the cytoskeleton: a breath-taking role for microfilaments.
    Jockusch BM; Rothkegel M; Schwarz G
    Neuroreport; 2004 Jul; 15(10):1535-8. PubMed ID: 15232278
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Super-Resolution Three-Dimensional Imaging of Actin Filaments in Cultured Cells and the Brain
    Park CE; Cho Y; Cho I; Jung H; Kim B; Shin JH; Choi S; Kwon SK; Hahn YK; Chang JB
    ACS Nano; 2020 Nov; 14(11):14999-15010. PubMed ID: 33095573
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tools and limitations to study the molecular composition of synapses by fluorescence microscopy.
    Maidorn M; Rizzoli SO; Opazo F
    Biochem J; 2016 Oct; 473(20):3385-3399. PubMed ID: 27729584
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Turnover of synapse and dynamic nature of synaptic molecules in vitro and in vivo.
    Kondo S; Okabe S
    Acta Histochem Cytochem; 2011 Feb; 44(1):9-15. PubMed ID: 21448313
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fluorescence imaging of synapse dynamics in normal circuit maturation and in developmental disorders.
    Okabe S
    Proc Jpn Acad Ser B Phys Biol Sci; 2017; 93(7):483-497. PubMed ID: 28769018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease.
    Padmanabhan P; Kneynsberg A; Götz J
    Nat Rev Neurosci; 2021 Dec; 22(12):723-740. PubMed ID: 34725519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Illuminating life's building blocks.
    Fessenden M
    Nature; 2016 May; 533(7604):565-8. PubMed ID: 27225132
    [No Abstract]   [Full Text] [Related]  

  • 69. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences.
    Maglione M; Sigrist SJ
    Nat Neurosci; 2013 Jul; 16(7):790-7. PubMed ID: 23799471
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantum imaging in biological samples.
    Schnell C
    Nat Methods; 2019 Mar; 16(3):214. PubMed ID: 30814706
    [No Abstract]   [Full Text] [Related]  

  • 71. Probing synaptic signaling with quantum dots.
    De Koninck P; Labrecque S; Heyes CD; Wiseman PW
    HFSP J; 2007 May; 1(1):5-10. PubMed ID: 19404455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components.
    Reshetniak S; Rizzoli SO
    Front Synaptic Neurosci; 2019; 11():23. PubMed ID: 31507402
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy.
    Heller JP; Rusakov DA
    Front Cell Neurosci; 2017; 11():374. PubMed ID: 29225567
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Editorial: Molecular Dynamics at the Immunological Synapse.
    Alcover A; Di Bartolo V; Roda-Navarro P
    Front Immunol; 2016; 7():632. PubMed ID: 28066441
    [No Abstract]   [Full Text] [Related]  

  • 75. Editorial: Quantifying and controlling the nano-architecture of neuronal synapses.
    Chen X; Kuner T; Blanpied TA
    Front Synaptic Neurosci; 2022; 14():1024073. PubMed ID: 36160915
    [No Abstract]   [Full Text] [Related]  

  • 76. Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation.
    Ito-Ishida A; Miyazaki T; Miura E; Matsuda K; Watanabe M; Yuzaki M; Okabe S
    Neuron; 2012 Nov; 76(3):549-64. PubMed ID: 23141067
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Super-resolution microscopy for analyzing neuromuscular junctions and synapses.
    Badawi Y; Nishimune H
    Neurosci Lett; 2020 Jan; 715():134644. PubMed ID: 31765730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex.
    Tada H; Miyazaki T; Takemoto K; Jitsuki S; Nakajima W; Koide M; Yamamoto N; Taguchi A; Kawai H; Komiya K; Suyama K; Abe H; Sano A; Takahashi T
    Sci Rep; 2017 Aug; 7(1):8471. PubMed ID: 28814784
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neonatal isolation augments social dominance by altering actin dynamics in the medial prefrontal cortex.
    Tada H; Miyazaki T; Takemoto K; Takase K; Jitsuki S; Nakajima W; Koide M; Yamamoto N; Komiya K; Suyama K; Sano A; Taguchi A; Takahashi T
    Proc Natl Acad Sci U S A; 2016 Nov; 113(45):E7097-E7105. PubMed ID: 27791080
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease.
    Stefen H; Chaichim C; Power J; Fath T
    Neural Plast; 2016; 2016():2371970. PubMed ID: 27127658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.