These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22351092)

  • 1. A rat chronic pain model of spinal cord contusion injury.
    Sharp K; Boroujerdi A; Steward O; Luo ZD
    Methods Mol Biol; 2012; 851():195-203. PubMed ID: 22351092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic pain following spinal cord injury.
    Rekand T; Hagen EM; Grønning M
    Tidsskr Nor Laegeforen; 2012 Apr; 132(8):974-9. PubMed ID: 22562333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pain behaviors after spinal cord contusion injury in two commonly used mouse strains.
    Kerr BJ; David S
    Exp Neurol; 2007 Aug; 206(2):240-7. PubMed ID: 17586495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative assessment of respiratory function following contusion injury of the cervical spinal cord.
    el-Bohy AA; Schrimsher GW; Reier PJ; Goshgarian HG
    Exp Neurol; 1998 Mar; 150(1):143-52. PubMed ID: 9514833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B1 and TRPV-1 receptor genes and their relationship to hyperalgesia following spinal cord injury.
    DomBourian MG; Turner NA; Gerovac TA; Vemuganti R; Miranpuri GS; Türeyen K; Satriotomo I; Miletic V; Resnick DK
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2778-82. PubMed ID: 17108828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury.
    Vinit S; Kastner A
    Respir Physiol Neurobiol; 2009 Nov; 169(2):115-22. PubMed ID: 19682608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-irradiation of the contusion site improves locomotor and histological outcomes in spinal cord-injured rats.
    Zeman RJ; Feng Y; Peng H; Visintainer PF; Moorthy CR; Couldwell WT; Etlinger JD
    Exp Neurol; 2001 Nov; 172(1):228-34. PubMed ID: 11681855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats.
    Baker KA; Nakashima S; Hagg T
    Exp Neurol; 2007 May; 205(1):82-91. PubMed ID: 17316612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steps toward developing an EEG biofeedback treatment for chronic pain.
    Jensen MP; Gertz KJ; Kupper AE; Braden AL; Howe JD; Hakimian S; Sherlin LH
    Appl Psychophysiol Biofeedback; 2013 Jun; 38(2):101-8. PubMed ID: 23532434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slope analysis of somatosensory evoked potentials in spinal cord injury for detecting contusion injury and focal demyelination.
    Agrawal G; Sherman D; Maybhate A; Gorelik M; Kerr DA; Thakor NV; All AH
    J Clin Neurosci; 2010 Sep; 17(9):1159-64. PubMed ID: 20538464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.
    Zeman RJ; Wen X; Ouyang N; Rocchio R; Shih L; Alfieri A; Moorthy C; Etlinger JD
    Neurosurgery; 2008 Nov; 63(5):981-7; discussion 987-8. PubMed ID: 19005390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord injury models.
    Wrathall JR
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S129-34. PubMed ID: 1588603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of group II and group III metabotropic glutamate receptors in spinal cord injury.
    Mills CD; Johnson KM; Hulsebosch CE
    Exp Neurol; 2002 Jan; 173(1):153-67. PubMed ID: 11771948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccinia virus complement control protein reduces inflammation and improves spinal cord integrity following spinal cord injury.
    Reynolds DN; Smith SA; Zhang YP; Mengsheng Q; Lahiri DK; Morassutti DJ; Shields CB; Kotwal GJ
    Ann N Y Acad Sci; 2004 Dec; 1035():165-78. PubMed ID: 15681807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury.
    Abrams MB; Dominguez C; Pernold K; Reger R; Wiesenfeld-Hallin Z; Olson L; Prockop D
    Restor Neurol Neurosci; 2009; 27(4):307-21. PubMed ID: 19738324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic spinal cord injury induced changes in the responses of thalamic neurons.
    Hubscher CH; Johnson RD
    Exp Neurol; 2006 Jan; 197(1):177-88. PubMed ID: 16266704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in spinal cord injury-induced gene expression in rat are strain-dependent.
    Schmitt C; Miranpuri GS; Dhodda VK; Isaacson J; Vemuganti R; Resnick DK
    Spine J; 2006; 6(2):113-9. PubMed ID: 16517380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplants of adrenal medullary chromaffin cells reduce forelimb and hindlimb allodynia in a rodent model of chronic central pain after spinal cord hemisection injury.
    Hains BC; Chastain KM; Everhart AW; McAdoo DJ; Hulsebosch CE
    Exp Neurol; 2000 Aug; 164(2):426-37. PubMed ID: 10915581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.