These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22351259)

  • 1. Comparative performance of flat sheet and spiral wound modules in the nanofiltration of reactive dye solution.
    Patel TM; Chheda H; Baheti A; Patel P; Nath K
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2994-3004. PubMed ID: 22351259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.
    Chen Q; Yang Y; Zhou M; Liu M; Yu S; Gao C
    J Hazard Mater; 2015 Mar; 284():121-9. PubMed ID: 25463225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application.
    Koyuncu I; Topacik D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of the methanogenic landfill leachate with thin open channel reverse osmosis membrane modules.
    Li F; Wichmann K; Heine W
    Waste Manag; 2009 Feb; 29(2):960-4. PubMed ID: 18693005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.
    Wu Q; Li Y; Wang W; Wang T; Hu H
    J Environ Sci (China); 2016 Mar; 41():227-234. PubMed ID: 26969069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane bioreactor application within the treatment of high-strength textile effluent.
    De Jager D; Sheldon MS; Edwards W
    Water Sci Technol; 2012; 65(5):907-14. PubMed ID: 22339026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiltration based water reclamation from tannery effluent following coagulation pretreatment.
    Dasgupta J; Mondal D; Chakraborty S; Sikder J; Curcio S; Arafat HA
    Ecotoxicol Environ Saf; 2015 Nov; 121():22-30. PubMed ID: 26188702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts.
    Deng J; Zhang Y; Liu J; Zhang H
    Water Sci Technol; 2012; 65(1):171-6. PubMed ID: 22173422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubular nanofiltration of highly concentrated C.I. Acid Black 210 dye.
    Zahrim AY; Hilal N; Tizaoui C
    Water Sci Technol; 2013; 67(4):901-6. PubMed ID: 23306271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of dye class on the comparison of direct contact and vacuum membrane distillation applied to remediation of dyeing wastewater.
    Ramlow H; Machado RAF; Bierhalz ACK; Marangoni C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(13):1337-1347. PubMed ID: 31361190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts.
    Koyuncu I; Topacik D; Wiesner MR
    Water Res; 2004 Jan; 38(2):432-40. PubMed ID: 14675655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adsorption interferents on removal of Reactive Red 195 dye in wastewater by chitosan.
    Wen YZ; Liu WQ; Fang ZH; Liu WP
    J Environ Sci (China); 2005; 17(5):766-9. PubMed ID: 16312999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible Fe
    Kamari S; Shahbazi A
    Chemosphere; 2020 Mar; 243():125282. PubMed ID: 31734593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of the results for the synthetic and actual reactive dye bath effluent treatment by nanofiltration membranes.
    Koyuncu I; Topacik D; Yuksel E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2209-18. PubMed ID: 14524675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of operating parameters on spiramycin removal by nanofiltration membrane.
    Zhao C; Fan W; Wang T; Hou D; Luan Z
    Water Sci Technol; 2013; 68(7):1512-9. PubMed ID: 24135099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and Scale-up of Nanofiltration Membranes for Concentration of Lactose and Real Whey Permeate.
    Hofmann K; Hamel C
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.