BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22351509)

  • 1. Chemical vapor deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity.
    Wassei JK; Mecklenburg M; Torres JA; Fowler JD; Regan BC; Kaner RB; Weiller BH
    Small; 2012 May; 8(9):1415-22. PubMed ID: 22351509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition.
    Garlow JA; Barrett LK; Wu L; Kisslinger K; Zhu Y; Pulecio JF
    Sci Rep; 2016 Jan; 6():19804. PubMed ID: 26821604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.
    Liu M; Zhang Y; Chen Y; Gao Y; Gao T; Ma D; Ji Q; Zhang Y; Li C; Liu Z
    ACS Nano; 2012 Dec; 6(12):10581-9. PubMed ID: 23157621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper.
    Li X; Magnuson CW; Venugopal A; Tromp RM; Hannon JB; Vogel EM; Colombo L; Ruoff RS
    J Am Chem Soc; 2011 Mar; 133(9):2816-9. PubMed ID: 21309560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy.
    Fang W; Hsu AL; Caudillo R; Song Y; Birdwell AG; Zakar E; Kalbac M; Dubey M; Palacios T; Dresselhaus MS; Araujo PT; Kong J
    Nano Lett; 2013 Apr; 13(4):1541-8. PubMed ID: 23470052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.
    Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS
    ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twisting bilayer graphene superlattices.
    Lu CC; Lin YC; Liu Z; Yeh CH; Suenaga K; Chiu PW
    ACS Nano; 2013 Mar; 7(3):2587-94. PubMed ID: 23448165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-area synthesis of high-quality and uniform graphene films on copper foils.
    Li X; Cai W; An J; Kim S; Nah J; Yang D; Piner R; Velamakanni A; Jung I; Tutuc E; Banerjee SK; Colombo L; Ruoff RS
    Science; 2009 Jun; 324(5932):1312-4. PubMed ID: 19423775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation.
    Wang H; Wang G; Bao P; Yang S; Zhu W; Xie X; Zhang WJ
    J Am Chem Soc; 2012 Feb; 134(8):3627-30. PubMed ID: 22324740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition.
    Gao T; Xie S; Gao Y; Liu M; Chen Y; Zhang Y; Liu Z
    ACS Nano; 2011 Nov; 5(11):9194-201. PubMed ID: 22023251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition.
    Kim YS; Lee JH; Kim YD; Jerng SK; Joo K; Kim E; Jung J; Yoon E; Park YD; Seo S; Chun SH
    Nanoscale; 2013 Feb; 5(3):1221-6. PubMed ID: 23299508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil.
    Huang M; Bakharev PV; Wang ZJ; Biswal M; Yang Z; Jin S; Wang B; Park HJ; Li Y; Qu D; Kwon Y; Chen X; Lee SH; Willinger MG; Yoo WJ; Lee Z; Ruoff RS
    Nat Nanotechnol; 2020 Apr; 15(4):289-295. PubMed ID: 31959931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorination of isotopically labeled turbostratic and Bernal stacked bilayer graphene.
    Ek Weis J; Costa SD; Frank O; Bastl Z; Kalbac M
    Chemistry; 2015 Jan; 21(3):1081-7. PubMed ID: 25394738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of layer stacking in CVD graphene under quasi-static condition.
    Subhedar KM; Sharma I; Dhakate SR
    Phys Chem Chem Phys; 2015 Sep; 17(34):22304-10. PubMed ID: 26245487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexagonal single crystal domains of few-layer graphene on copper foils.
    Robertson AW; Warner JH
    Nano Lett; 2011 Mar; 11(3):1182-9. PubMed ID: 21322599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study.
    Ek-Weis J; Costa S; Frank O; Kalbac M
    J Phys Chem Lett; 2014 Feb; 5(3):549-54. PubMed ID: 26276607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of graphene: influence of synthesis variables.
    Lavin-Lopez MP; Valverde JL; Cuevas MC; Garrido A; Sanchez-Silva L; Martinez P; Romero-Izquierdo A
    Phys Chem Chem Phys; 2014 Feb; 16(7):2962-70. PubMed ID: 24390482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.