BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22351776)

  • 1. Enzyme kinetics and interaction studies for human JNK1β1 and substrates activating transcription factor 2 (ATF2) and c-Jun N-terminal kinase (c-Jun).
    Figuera-Losada M; LoGrasso PV
    J Biol Chem; 2012 Apr; 287(16):13291-302. PubMed ID: 22351776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High yield purification of JNK1β1 and activation by in vitro reconstitution of the MEKK1→MKK4→JNK MAPK phosphorylation cascade.
    Owen GR; Achilonu I; Dirr HW
    Protein Expr Purif; 2013 Feb; 87(2):87-99. PubMed ID: 23147205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism and inhibitor characterization for c-jun-N-terminal kinase 3alpha1.
    Ember B; Kamenecka T; LoGrasso P
    Biochemistry; 2008 Mar; 47(10):3076-84. PubMed ID: 18269248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2.
    Thévenin AF; Zony CL; Bahnson BJ; Colman RF
    Protein Sci; 2011 May; 20(5):834-48. PubMed ID: 21384452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase in insulin-induced Thr69 and Thr71 phosphorylation of activating transcription factor 2.
    Baan B; van Dam H; van der Zon GC; Maassen JA; Ouwens DM
    Mol Endocrinol; 2006 Aug; 20(8):1786-95. PubMed ID: 16601071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic characterization for c-jun-N-Terminal Kinase 1alpha1.
    Ember B; LoGrasso P
    Arch Biochem Biophys; 2008 Sep; 477(2):324-9. PubMed ID: 18559253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor.
    Ngoei KR; Catimel B; Milech N; Watt PM; Bogoyevitch MA
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1939-50. PubMed ID: 23792175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide.
    Ngoei KR; Catimel B; Church N; Lio DS; Dogovski C; Perugini MA; Watt PM; Cheng HC; Ng DC; Bogoyevitch MA
    Biochem J; 2011 Mar; 434(3):399-413. PubMed ID: 21162712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons.
    Repici M; Mare L; Colombo A; Ploia C; Sclip A; Bonny C; Nicod P; Salmona M; Borsello T
    Neuroscience; 2009 Mar; 159(1):94-103. PubMed ID: 19135136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation.
    Owen GR; Stoychev S; Achilonu I; Dirr HW
    J Mol Biol; 2014 Oct; 426(21):3569-89. PubMed ID: 25178256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases.
    Sprowles A; Robinson D; Wu YM; Kung HJ; Wisdom R
    Exp Cell Res; 2005 Aug; 308(2):459-68. PubMed ID: 15950217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of ERKs and mitogen- and stress-activated protein kinase in UVC-induced phosphorylation of ATF2 in JB6 cells.
    Zhu F; Zhang Y; Bode AM; Dong Z
    Carcinogenesis; 2004 Oct; 25(10):1847-52. PubMed ID: 15192015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair.
    Hayakawa J; Depatie C; Ohmichi M; Mercola D
    J Biol Chem; 2003 Jun; 278(23):20582-92. PubMed ID: 12663670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade.
    Enslen H; Tokumitsu H; Stork PJ; Davis RJ; Soderling TR
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10803-8. PubMed ID: 8855261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death.
    Buschmann T; Yin Z; Bhoumik A; Ronai Z
    J Biol Chem; 2000 Jun; 275(22):16590-6. PubMed ID: 10748185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors.
    Fuchs SY; Xie B; Adler V; Fried VA; Davis RJ; Ronai Z
    J Biol Chem; 1997 Dec; 272(51):32163-8. PubMed ID: 9405416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress.
    Teng CH; Huang WN; Meng TC
    J Biol Chem; 2007 Sep; 282(39):28395-28407. PubMed ID: 17681939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-inflammatory cytokines stimulate mitogen-activated protein kinase subfamilies, increase phosphorylation of c-Jun and ATF2 and upregulate c-Jun protein in neonatal rat ventricular myocytes.
    Clerk A; Harrison JG; Long CS; Sugden PH
    J Mol Cell Cardiol; 1999 Dec; 31(12):2087-99. PubMed ID: 10640438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis.
    Zhang JY; Jiang H; Gao W; Wu J; Peng K; Shi YF; Zhang XJ
    Cell Mol Life Sci; 2008 May; 65(9):1435-45. PubMed ID: 18385943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death.
    Brandt B; Abou-Eladab EF; Tiedge M; Walzel H
    Cell Death Dis; 2010; 1(2):e23. PubMed ID: 21364631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.