BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22352355)

  • 21. Capsular polysaccharides of cultured phototrophic biofilms.
    Di Pippo F; Bohn A; Congestri R; De Philippis R; Albertano P
    Biofouling; 2009; 25(6):495-504. PubMed ID: 19382011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity and expression of cyanobacterial hupS genes in pure cultures and in a nitrogen-limited phototrophic biofilm.
    Roeselers G; Huisjes EH; van Loosdrecht MC; Muyzer G
    FEMS Microbiol Ecol; 2008 Mar; 63(3):292-300. PubMed ID: 18205813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyphasic detection of cyanobacteria in terrestrial biofilms.
    Gaylarde C; Gaylarde P; Copp J; Neilan B
    Biofouling; 2004 Apr; 20(2):71-9. PubMed ID: 15203960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biogenic black crusts on buildings in unpolluted environments.
    Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P
    Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation.
    Gambino M; Sanmartín P; Longoni M; Villa F; Mitchell R; Cappitelli F
    Sci Total Environ; 2019 Apr; 659():342-353. PubMed ID: 30599353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico.
    Ortega-Morales O; Guezennec J; Hernández-Duque G; Gaylarde CC; Gaylarde PM
    Curr Microbiol; 2000 Feb; 40(2):81-5. PubMed ID: 10594218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyanobacteria and microalgae growing on monuments of UNESCO World Heritage site Champaner Pavagadh, India: biofilms and their exopolysaccharide composition.
    Mehta D; Shah D
    Arch Microbiol; 2021 Aug; 203(6):3425-3433. PubMed ID: 33891130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does green light influence the fluorescence properties and structure of phototrophic biofilms?
    Roldán M; Oliva F; Gónzalez del Valle MA; Saiz-Jimenez C; Hernández-Mariné M
    Appl Environ Microbiol; 2006 Apr; 72(4):3026-31. PubMed ID: 16598012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinformatic, phylogenetic and chemical analysis of the UV-absorbing compounds scytonemin and mycosporine-like amino acids from the microbial mat communities of Shark Bay, Australia.
    D'Agostino PM; Woodhouse JN; Liew HT; Sehnal L; Pickford R; Wong HL; Burns BP; Neilan BA
    Environ Microbiol; 2019 Feb; 21(2):702-715. PubMed ID: 30589201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and biofouling potential analysis of two cyanobacterial strains isolated from Cape Verde and Morocco.
    Romeu MJ; Morais J; Gomes LC; Silva R; Vasconcelos V; Mergulhão FJM
    FEMS Microbiol Ecol; 2023 Feb; 99(3):. PubMed ID: 36633537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life under solar UV radiation in aquatic organisms.
    Sinha RP; Hader DP
    Adv Space Res; 2002; 30(6):1547-56. PubMed ID: 12575720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The high-energy radiation protectant extracellular sheath pigment scytonemin and its reduced counterpart in the cyanobacterium Scytonema sp. R77DM.
    Rastogi RP; Sonani RR; Madamwar D
    Bioresour Technol; 2014 Nov; 171():396-400. PubMed ID: 25226055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salinity induced synthesis of UV-screening compound scytonemin in the cyanobacterium Lyngbya aestuarii.
    Rath J; Mandal S; Adhikary SP
    J Photochem Photobiol B; 2012 Oct; 115():5-8. PubMed ID: 22819261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France).
    Fourçans A; de Oteyza TG; Wieland A; Solé A; Diestra E; van Bleijswijk J; Grimalt JO; Kühl M; Esteve I; Muyzer G; Caumette P; Duran R
    FEMS Microbiol Ecol; 2004 Dec; 51(1):55-70. PubMed ID: 16329855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ.
    Popović S; Krizmanić J; Vidaković D; Karadžić V; Milovanović Ž; Pećić M; Subakov Simić G
    Environ Monit Assess; 2020 Oct; 192(11):720. PubMed ID: 33089398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation strategies of the sheathed cyanobacterium Lyngbya majuscula to ultraviolet-B.
    Mandal S; Rath J; Adhikary SP
    J Photochem Photobiol B; 2011 Feb; 102(2):115-22. PubMed ID: 20970352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity.
    Matsui K; Nazifi E; Hirai Y; Wada N; Matsugo S; Sakamoto T
    J Gen Appl Microbiol; 2012; 58(2):137-44. PubMed ID: 22688245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of nitrogen availability on pigmentation and carbon assimilation in the cyanobacterium Synechococcus sp. strain SH-94-5.
    Miller SR; Martin M; Touchton J; Castenholz RW
    Arch Microbiol; 2002 May; 177(5):392-400. PubMed ID: 11976748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodeterioration of stone monuments: Studies on the influence of bioreceptivity on cyanobacterial biofilm growth and on the biocidal efficacy of essential oils in natural hydrogel.
    Gabriele F; Ranaldi R; Bruno L; Casieri C; Rugnini L; Spreti N
    Sci Total Environ; 2023 Apr; 870():161901. PubMed ID: 36736398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus.
    Chen LZ; Wang GH; Hong S; Liu A; Li C; Liu YD
    J Integr Plant Biol; 2009 Feb; 51(2):194-200. PubMed ID: 19200158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.