These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A single-scattering correction for large contrasts in elastic layers. Küsel ET; Siegmann WL; Collins MD J Acoust Soc Am; 2007 Feb; 121(2):808-13. PubMed ID: 17348505 [TBL] [Abstract][Full Text] [Related]
3. Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources. Frank SD; Collis JM; Odom RI J Acoust Soc Am; 2015 Jun; 137(6):3534-43. PubMed ID: 26093440 [TBL] [Abstract][Full Text] [Related]
4. Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness. Collis JM; Siegmann WL; Jensen FB; Zampolli M; Küsel ET; Collins MD J Acoust Soc Am; 2008 Jan; 123(1):51-5. PubMed ID: 18177137 [TBL] [Abstract][Full Text] [Related]
5. Two parabolic equations for propagation in layered poro-elastic media. Metzler AM; Siegmann WL; Collins MD; Collis JM J Acoust Soc Am; 2013 Jul; 134(1):246-56. PubMed ID: 23862802 [TBL] [Abstract][Full Text] [Related]
6. A single-scattering correction for the seismo-acoustic parabolic equation. Collins MD J Acoust Soc Am; 2012 Apr; 131(4):2638-42. PubMed ID: 22501044 [TBL] [Abstract][Full Text] [Related]
7. Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation. Jerzak W; Siegmann WL; Collins MD J Acoust Soc Am; 2005 Jun; 117(6):3497-503. PubMed ID: 16018454 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulation and visualization of elastic waves using mass-spring lattice model. Yim H; Sohn Y IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):549-58. PubMed ID: 18238581 [TBL] [Abstract][Full Text] [Related]
9. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. Dagrau F; Rénier M; Marchiano R; Coulouvrat F J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874 [TBL] [Abstract][Full Text] [Related]
10. Application of the Beilis-Tappert parabolic equation method to sound propagation over irregular terrain. Parakkal S; Gilbert KE; Di X J Acoust Soc Am; 2012 Feb; 131(2):1039-46. PubMed ID: 22352479 [TBL] [Abstract][Full Text] [Related]
11. Radiative transfer theory applied to ocean bottom modeling. Quijano JE; Zurk LM J Acoust Soc Am; 2009 Oct; 126(4):1711-23. PubMed ID: 19813787 [TBL] [Abstract][Full Text] [Related]
12. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources. Nealy JL; Collis JM; Frank SD J Acoust Soc Am; 2016 Apr; 139(4):EL95. PubMed ID: 27106346 [TBL] [Abstract][Full Text] [Related]
13. Treatment of a sloping fluid-solid interface and sediment layering with the seismo-acoustic parabolic equation. Collins MD; Siegmann WL J Acoust Soc Am; 2015 Jan; 137(1):492-7. PubMed ID: 25618077 [TBL] [Abstract][Full Text] [Related]
14. A normal mode projection technique for array response synthesis in range-dependent environments. Heaney KD J Acoust Soc Am; 2009 Sep; 126(3):1036-45. PubMed ID: 19739716 [TBL] [Abstract][Full Text] [Related]
15. Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation. Graaff R; Aarnoudse JG; de Mul FF; Jentink HW Appl Opt; 1989 Jun; 28(12):2273-9. PubMed ID: 20555511 [TBL] [Abstract][Full Text] [Related]
16. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers. Collis JM; Frank SD; Metzler AM; Preston KS J Acoust Soc Am; 2016 May; 139(5):2672. PubMed ID: 27250161 [TBL] [Abstract][Full Text] [Related]
17. An improved approximation of Bergmann's form for the Rayleigh wave velocity. Vinh PC; Malischewsky PG Ultrasonics; 2007 Dec; 47(1-4):49-54. PubMed ID: 17825868 [TBL] [Abstract][Full Text] [Related]
18. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder. Mitri FG Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372 [TBL] [Abstract][Full Text] [Related]
19. Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography. Papazoglou S; Hamhaber U; Braun J; Sack I Phys Med Biol; 2007 Feb; 52(3):675-84. PubMed ID: 17228113 [TBL] [Abstract][Full Text] [Related]
20. Range-dependent waveguide scattering model calibrated for bottom reverberation in a continental shelf environment. Galinde A; Donabed N; Andrews M; Lee S; Makris NC; Ratilal P J Acoust Soc Am; 2008 Mar; 123(3):1270-81. PubMed ID: 18345816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]