These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22352513)
1. Neuromuscular control of fundamental frequency and glottal posture at phonation onset. Chhetri DK; Neubauer J; Berry DA J Acoust Soc Am; 2012 Feb; 131(2):1401-12. PubMed ID: 22352513 [TBL] [Abstract][Full Text] [Related]
2. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control. Chhetri DK; Neubauer J; Sofer E; Berry DA J Acoust Soc Am; 2014 Apr; 135(4):2052-64. PubMed ID: 25235003 [TBL] [Abstract][Full Text] [Related]
3. Differential roles for the thyroarytenoid and lateral cricoarytenoid muscles in phonation. Chhetri DK; Neubauer J Laryngoscope; 2015 Dec; 125(12):2772-7. PubMed ID: 26198167 [TBL] [Abstract][Full Text] [Related]
7. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity. Chhetri DK; Park SJ Laryngoscope; 2016 May; 126(5):1123-30. PubMed ID: 26971707 [TBL] [Abstract][Full Text] [Related]
8. Function of the interarytenoid(IA) muscle in phonation: in vivo laryngeal model. Choi HS; Ye M; Berke GS Yonsei Med J; 1995 Mar; 36(1):58-67. PubMed ID: 7740837 [TBL] [Abstract][Full Text] [Related]
9. An Euler-Bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns. Serry MA; Alzamendi GA; ZaƱartu M; Peterson SD J Mech Behav Biomed Mater; 2023 Nov; 147():106130. PubMed ID: 37774440 [TBL] [Abstract][Full Text] [Related]
10. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject. Laukkanen AM; Titze IR; Hoffman H; Finnegan E Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306 [TBL] [Abstract][Full Text] [Related]
12. Restraining mechanisms in regulating glottal closure during phonation. Zhang Z J Acoust Soc Am; 2011 Dec; 130(6):4010-9. PubMed ID: 22225055 [TBL] [Abstract][Full Text] [Related]
13. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model. Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590 [TBL] [Abstract][Full Text] [Related]
14. THE ROLE OF THE THYROARYTENOID MUSCLE IN REGULATING GLOTTAL AIRFLOW AND GLOTTAL CLOSURE IN AN IN VIVO CANINE LARYNX MODEL. Luegmair G; Chhetri DK; Zhang Z Proc Meet Acoust; 2014 Oct; 22():. PubMed ID: 34900082 [TBL] [Abstract][Full Text] [Related]
15. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model. Choi HS; Berke GS; Ye M; Kreiman J Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape. Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390 [TBL] [Abstract][Full Text] [Related]
17. Function of the thyroarytenoid muscle in a canine laryngeal model. Choi HS; Berke GS; Ye M; Kreiman J Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096 [TBL] [Abstract][Full Text] [Related]
18. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801 [TBL] [Abstract][Full Text] [Related]
19. Glottal adjustment for regulating vocal intensity. An experimental study. Tanaka S; Tanabe M Acta Otolaryngol; 1986; 102(3-4):315-24. PubMed ID: 3776526 [TBL] [Abstract][Full Text] [Related]
20. A biomechanical laryngeal model of voice F0 and glottal width control. Farley GR J Acoust Soc Am; 1996 Dec; 100(6):3794-812. PubMed ID: 8969481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]