These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22352522)

  • 1. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of automatic and human speech recognition in null grammar.
    Juneja A
    J Acoust Soc Am; 2012 Mar; 131(3):EL256-61. PubMed ID: 22423817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing speech under a processing load: dissociating energetic from informational factors.
    Mattys SL; Brooks J; Cooke M
    Cogn Psychol; 2009 Nov; 59(3):203-43. PubMed ID: 19423089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of age, hearing, and working memory on the speech comprehension benefit derived from an automatic speech recognition system.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2009 Apr; 30(2):262-72. PubMed ID: 19194286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing phonetic confusions using formal concept analysis.
    Peláez-Moreno C; García-Moral AI; Valverde-Albacete FJ
    J Acoust Soc Am; 2010 Sep; 128(3):1377-90. PubMed ID: 20815472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binaural noise-reduction hearing aid scheme with real-time processing in the frequency domain.
    Kollmeier B; Peissig J; Hohmann V
    Scand Audiol Suppl; 1993; 38():28-38. PubMed ID: 8153562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The foreign language cocktail party problem: Energetic and informational masking effects in non-native speech perception.
    Cooke M; Garcia Lecumberri ML; Barker J
    J Acoust Soc Am; 2008 Jan; 123(1):414-27. PubMed ID: 18177170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing articulatory gestures from speech for robust speech recognition.
    Mitra V; Nam H; Espy-Wilson C; Saltzman E; Goldstein L
    J Acoust Soc Am; 2012 Mar; 131(3):2270-87. PubMed ID: 22423722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust speech recognition from binary masks.
    Narayanan A; Wang D
    J Acoust Soc Am; 2010 Nov; 128(5):EL217-22. PubMed ID: 21110529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the use of durational information in human spoken-word recognition.
    Scharenborg O
    J Acoust Soc Am; 2010 Jun; 127(6):3758-70. PubMed ID: 20550274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised speech segmentation: an analysis of the hypothesized phone boundaries.
    Scharenborg O; Wan V; Ernestus M
    J Acoust Soc Am; 2010 Feb; 127(2):1084-95. PubMed ID: 20136229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removing additive noise via neuro-fuzzy-based reinforcement learning.
    Lin CS; Kyriakakis C
    J Acoust Soc Am; 2008 Aug; 124(2):1026-37. PubMed ID: 18681594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the influence of reverberation on binaural speech intelligibility in noise and in quiet.
    Rennies J; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Nov; 130(5):2999-3012. PubMed ID: 22087928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.
    Nixon C; Anderson T; Morris L; McCavitt A; McKinley R; Yeager D; McDaniel M
    Aviat Space Environ Med; 1998 Nov; 69(11):1087-94. PubMed ID: 9819167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.