These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22352524)

  • 1. Acoustic transmission analysis on cavity resonance sound in a cylindrical cavity system: application to a Korean bell.
    Jeong WT; Kang YJ; Kim SH
    J Acoust Soc Am; 2012 Feb; 131(2):1547-57. PubMed ID: 22352524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.
    Shao W; Mechefske CK
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1728-36. PubMed ID: 15898620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface.
    Li TY; Miao YY; Ye WB; Zhu X; Zhu XM
    J Acoust Soc Am; 2014 Sep; 136(3):1054. PubMed ID: 25190381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic analysis of a rectangular cavity with general impedance boundary conditions.
    Du JT; Li WL; Liu ZG; Xu HA; Ji ZL
    J Acoust Soc Am; 2011 Aug; 130(2):807-17. PubMed ID: 21877796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical prediction of the breakout noise from a rectangular cavity with one compliant wall.
    Venkatesham B; Tiwari M; Munjal ML
    J Acoust Soc Am; 2008 Nov; 124(5):2952-62. PubMed ID: 19045783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise transmission from a curved panel into a cylindrical enclosure: analysis of structural acoustic coupling.
    Henry JK; Clark RL
    J Acoust Soc Am; 2001 Apr; 109(4):1456-63. PubMed ID: 11325117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scattering of sound by a long cylinder above an impedance boundary.
    Lui WK; Li KM
    J Acoust Soc Am; 2010 Feb; 127(2):664-74. PubMed ID: 20136188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boundary element analyses for sound transmission loss of panels.
    Zhou R; Crocker MJ
    J Acoust Soc Am; 2010 Feb; 127(2):829-40. PubMed ID: 20136206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model for characterizing noise transmission into finite cylindrical structures.
    Li D; Vipperman JS
    J Acoust Soc Am; 2005 Feb; 117(2):679-89. PubMed ID: 15759688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges.
    Du JT; Li WL; Xu HA; Liu ZG
    J Acoust Soc Am; 2012 Apr; 131(4):2799-810. PubMed ID: 22501058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators.
    Estève SJ; Johnson ME
    J Acoust Soc Am; 2002 Dec; 112(6):2840-8. PubMed ID: 12509005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The acoustics of the open mastoid cavity (so-called "radical cavity) and its modification by surgical measures. I. Physical principles, experimental studies].
    Hartwein J
    Laryngorhinootologie; 1992 Aug; 71(8):401-6. PubMed ID: 1388464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.
    Gan RZ; Sun Q; Feng B; Wood MW
    Med Eng Phys; 2006 Jun; 28(5):395-404. PubMed ID: 16122964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic manipulation of particles in a cylindrical cavity: Theoretical and experimental study on the effects of boundary conditions.
    Xu D; Cai F; Chen M; Li F; Wang C; Meng L; Xu D; Wang W; Wu J; Zheng H
    Ultrasonics; 2019 Mar; 93():18-25. PubMed ID: 30384006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
    Rajabi M; Hasheminejad SM
    Ultrasonics; 2009 Dec; 49(8):682-95. PubMed ID: 19586650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.
    Santillan AO; Cutanda-Henríquez V
    J Acoust Soc Am; 2008 Nov; 124(5):2733-41. PubMed ID: 19045761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system.
    Wright L; Robinson SP; Humphrey VF
    J Acoust Soc Am; 2009 Mar; 125(3):1374-83. PubMed ID: 19275294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of transmission coefficients for finite and semi-infinite coupled plate structures.
    Skeen MB; Kessissoglou NJ
    J Acoust Soc Am; 2007 Aug; 122(2):814-22. PubMed ID: 17672632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.