These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas. Lin YT; McMahon KG; Lynch JF; Siegmann WL J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881 [TBL] [Abstract][Full Text] [Related]
3. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range. Duda TF; Lin YT; Reeder DB J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060 [TBL] [Abstract][Full Text] [Related]
4. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. Lin YT; Duda TF; Lynch JF J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790 [TBL] [Abstract][Full Text] [Related]
5. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves. Badiey M; Katsnelson BG; Lin YT; Lynch JF J Acoust Soc Am; 2011 Apr; 129(4):EL141-7. PubMed ID: 21476621 [TBL] [Abstract][Full Text] [Related]
11. The impact of water column variability on horizontal wave number estimation and mode based geoacoustic inversion results. Becker KM; Frisk GV J Acoust Soc Am; 2008 Feb; 123(2):658-66. PubMed ID: 18247870 [TBL] [Abstract][Full Text] [Related]
12. Variability of phase and amplitude fronts due to horizontal refraction in shallow water. Katsnelson BG; Grigorev VA; Lynch JF J Acoust Soc Am; 2018 Jan; 143(1):193. PubMed ID: 29390752 [TBL] [Abstract][Full Text] [Related]
13. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications. Yang TC J Acoust Soc Am; 2014 Feb; 135(2):610-25. PubMed ID: 25234871 [TBL] [Abstract][Full Text] [Related]
14. Parameter dependence of acoustic mode quantities in an idealized model for shallow-water nonlinear internal wave ducts. Milone MA; DeCourcy BJ; Lin YT; Siegmann WL J Acoust Soc Am; 2019 Sep; 146(3):1934. PubMed ID: 31590537 [TBL] [Abstract][Full Text] [Related]
15. Stability of convective patterns in reaction fronts: a comparison of three models. Vasquez DA; Coroian DI Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049 [TBL] [Abstract][Full Text] [Related]
16. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations. Rouseff D; Tang D; Williams KL; Wang Z; Moum JN J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565 [TBL] [Abstract][Full Text] [Related]
17. Numerical modelling of MHD waves in the solar chromosphere. Carlsson M; Bogdan TJ Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):395-404. PubMed ID: 16414886 [TBL] [Abstract][Full Text] [Related]
18. Observations of sound-speed fluctuations on the New Jersey continental shelf in the summer of 2006. Colosi JA; Duda TF; Lin YT; Lynch JF; Newhall AE; Cornuelle BD J Acoust Soc Am; 2012 Feb; 131(2):1733-48. PubMed ID: 22352602 [TBL] [Abstract][Full Text] [Related]
19. Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Rogers JM Chaos; 2002 Sep; 12(3):779-787. PubMed ID: 12779606 [TBL] [Abstract][Full Text] [Related]
20. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom. DeCourcy BJ; Lin YT; Siegmann WL J Acoust Soc Am; 2019 Sep; 146(3):1923. PubMed ID: 31590560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]