BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22352598)

  • 1. Horizontal Lloyd mirror patterns from straight and curved nonlinear internal waves.
    McMahon KG; Reilly-Raska LK; Siegmann WL; Lynch JF; Duda TF
    J Acoust Soc Am; 2012 Feb; 131(2):1689-700. PubMed ID: 22352598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.
    Lin YT; McMahon KG; Lynch JF; Siegmann WL
    J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
    Lin YT; Duda TF; Lynch JF
    J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
    Badiey M; Katsnelson BG; Lin YT; Lynch JF
    J Acoust Soc Am; 2011 Apr; 129(4):EL141-7. PubMed ID: 21476621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional coupled mode analysis of internal-wave acoustic ducts.
    Shmelev AA; Lynch JF; Lin YT; Schmidt H
    J Acoust Soc Am; 2014 May; 135(5):2497-512. PubMed ID: 24815234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: shallow-water environments.
    Colosi JA; Duda TF; Morozov AK
    J Acoust Soc Am; 2012 Feb; 131(2):1749-61. PubMed ID: 22352603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal nonlinear wave propagation through soft tissue.
    Valdez M; Balachandran B
    J Mech Behav Biomed Mater; 2013 Apr; 20():192-208. PubMed ID: 23510921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restless rays, steady wave fronts.
    Godin OA
    J Acoust Soc Am; 2007 Dec; 122(6):3353-63. PubMed ID: 18247745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of water column variability on horizontal wave number estimation and mode based geoacoustic inversion results.
    Becker KM; Frisk GV
    J Acoust Soc Am; 2008 Feb; 123(2):658-66. PubMed ID: 18247870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
    Katsnelson BG; Grigorev VA; Lynch JF
    J Acoust Soc Am; 2018 Jan; 143(1):193. PubMed ID: 29390752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic mode coupling induced by nonlinear internal waves: evaluation of the mode coupling matrices and applications.
    Yang TC
    J Acoust Soc Am; 2014 Feb; 135(2):610-25. PubMed ID: 25234871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter dependence of acoustic mode quantities in an idealized model for shallow-water nonlinear internal wave ducts.
    Milone MA; DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2019 Sep; 146(3):1934. PubMed ID: 31590537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.
    Rouseff D; Tang D; Williams KL; Wang Z; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL73-7. PubMed ID: 19045565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modelling of MHD waves in the solar chromosphere.
    Carlsson M; Bogdan TJ
    Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):395-404. PubMed ID: 16414886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations of sound-speed fluctuations on the New Jersey continental shelf in the summer of 2006.
    Colosi JA; Duda TF; Lin YT; Lynch JF; Newhall AE; Cornuelle BD
    J Acoust Soc Am; 2012 Feb; 131(2):1733-48. PubMed ID: 22352602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave front fragmentation due to ventricular geometry in a model of the rabbit heart.
    Rogers JM
    Chaos; 2002 Sep; 12(3):779-787. PubMed ID: 12779606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom.
    DeCourcy BJ; Lin YT; Siegmann WL
    J Acoust Soc Am; 2019 Sep; 146(3):1923. PubMed ID: 31590560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.