These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22352603)

  • 1. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: shallow-water environments.
    Colosi JA; Duda TF; Morozov AK
    J Acoust Soc Am; 2012 Feb; 131(2):1749-61. PubMed ID: 22352603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: cross-mode coherence and mean intensity.
    Colosi JA; Morozov AK
    J Acoust Soc Am; 2009 Sep; 126(3):1026-35. PubMed ID: 19739715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2014 Jul; 136(1):66-79. PubMed ID: 24993196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled mode transport theory for sound transmission through an ocean with random sound speed perturbations: coherence in deep water environments.
    Colosi JA; Chandrayadula TK; Voronovich AG; Ostashev VE
    J Acoust Soc Am; 2013 Oct; 134(4):3119-33. PubMed ID: 24116510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency normal-mode statistics in shallow water: the combined effect of random surface and internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2015 May; 137(5):2950-61. PubMed ID: 25994721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.
    Tang D; Henyey FS; Wang Z; Williams KL; Rouseff D; Dahl PH; Quijano J; Choi JW
    J Acoust Soc Am; 2008 Sep; 124(3):EL85-90. PubMed ID: 19045567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean.
    Lin YT; Newhall AE; Lynch JF
    J Acoust Soc Am; 2012 Feb; 131(2):1798-813. PubMed ID: 22352606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal coherence of sound transmissions in deep water revisited.
    Yang TC
    J Acoust Soc Am; 2008 Jul; 124(1):113-127. PubMed ID: 18646959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf. II. Intensity fluctuation.
    Tang D; Henyey FS; Wang Z; Williams KL; Rouseff D; Dahl PH; Quijano J; Choi JW
    J Acoust Soc Am; 2008 Sep; 124(3):EL91-6. PubMed ID: 19045568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
    Lin YT; Duda TF; Lynch JF
    J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity.
    Duda TF; Collis JM; Lin YT; Newhall AE; Lynch JF; DeFerrari HA
    J Acoust Soc Am; 2012 Feb; 131(2):1782-97. PubMed ID: 22352605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency dependence and intensity fluctuations due to shallow water internal waves.
    Badiey M; Katsnelson BG; Lynch JF; Pereselkov S
    J Acoust Soc Am; 2007 Aug; 122(2):747-60. PubMed ID: 17672625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On horizontal coherence estimates from path integral theory for sound propagation through random ocean sound-speed perturbations.
    Colosi JA
    J Acoust Soc Am; 2013 Oct; 134(4):3116-8. PubMed ID: 24116509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal Lloyd mirror patterns from straight and curved nonlinear internal waves.
    McMahon KG; Reilly-Raska LK; Siegmann WL; Lynch JF; Duda TF
    J Acoust Soc Am; 2012 Feb; 131(2):1689-700. PubMed ID: 22352598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.
    Oba R; Finette S
    J Acoust Soc Am; 2002 Feb; 111(2):769-84. PubMed ID: 11863179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal coherence of acoustic signals in a fluctuating ocean.
    Voronovich AG; Ostashev VE; Colosi JA
    J Acoust Soc Am; 2011 Jun; 129(6):3590-7. PubMed ID: 21682384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal coherence of acoustic rays and modes using the path integral approach.
    Yang TC
    J Acoust Soc Am; 2012 Jun; 131(6):4450-60. PubMed ID: 22712918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and vertical scales of acoustic fluctuations for 75-Hz, broadband transmissions to 87-km range in the eastern North Pacific Ocean.
    Colosi JA; Xu J; Worcester PF; Dzieciuch MA; Howe BM; Mercer JA
    J Acoust Soc Am; 2009 Sep; 126(3):1069-83. PubMed ID: 19739719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.