These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users. Donaldson GS; Kreft HA Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077 [TBL] [Abstract][Full Text] [Related]
6. How to stretch and shrink vowel systems: results from a vowel normalization procedure. Geng C; Mooshammer C J Acoust Soc Am; 2009 May; 125(5):3278-88. PubMed ID: 19425670 [TBL] [Abstract][Full Text] [Related]
7. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels. Ménard L; Davis BL; Boë LJ; Roy JP J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438 [TBL] [Abstract][Full Text] [Related]
8. Synergistic modes of vocal tract articulation for American English vowels. Story BH J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828 [TBL] [Abstract][Full Text] [Related]
9. The effect of oral articulation on the acoustic characteristics of nasalized vowels. Rong P; Kuehn DP J Acoust Soc Am; 2010 Apr; 127(4):2543-53. PubMed ID: 20370036 [TBL] [Abstract][Full Text] [Related]
10. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study. Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228 [TBL] [Abstract][Full Text] [Related]
11. Toward dynamic magnetic resonance imaging of the vocal tract during speech production. Ventura SM; Freitas DR; Tavares JM J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801 [TBL] [Abstract][Full Text] [Related]
12. Application of MRI and biomedical engineering in speech production study. Ventura SR; Freitas DR; Tavares JM Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):671-81. PubMed ID: 19418317 [TBL] [Abstract][Full Text] [Related]
13. Coordinating voicing onset with articulation: a potential role for sensory cues in shaping phonological distinctions. Loucks TM; Shosted RK; De Nil LF; Poletto CJ; King A Phonetica; 2010; 67(1-2):47-62. PubMed ID: 20798569 [TBL] [Abstract][Full Text] [Related]
14. Articulatory correlates of stress and speaking rate in Swedish VCV utterances. Engstrand O J Acoust Soc Am; 1988 May; 83(5):1863-75. PubMed ID: 3403802 [TBL] [Abstract][Full Text] [Related]
15. Incorporation of phonetic constraints in acoustic-to-articulatory inversion. Potard B; Laprie Y; Ouni S J Acoust Soc Am; 2008 Apr; 123(4):2310-23. PubMed ID: 18397035 [TBL] [Abstract][Full Text] [Related]
16. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images. Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833 [TBL] [Abstract][Full Text] [Related]
18. What anticipatory coarticulation in children tells us about speech motor control maturity. Barbier G; Perrier P; Payan Y; Tiede MK; Gerber S; Perkell JS; Ménard L PLoS One; 2020; 15(4):e0231484. PubMed ID: 32287289 [TBL] [Abstract][Full Text] [Related]
19. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images. Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233 [TBL] [Abstract][Full Text] [Related]
20. Patterns of phonological errors as a function of a phonological versus an articulatory locus of impairment. Romani C; Olson A; Semenza C; Granà A Cortex; 2002 Sep; 38(4):541-67. PubMed ID: 12465668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]