BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22352638)

  • 1. Three-color Förster resonance energy transfer within single F₀F₁-ATP synthases: monitoring elastic deformations of the rotary double motor in real time.
    Ernst S; Düser MG; Zarrabi N; Börsch M
    J Biomed Opt; 2012 Jan; 17(1):011004. PubMed ID: 22352638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic deformations of the rotary double motor of single F(o)F(1)-ATP synthases detected in real time by Förster resonance energy transfer.
    Ernst S; Düser MG; Zarrabi N; Dunn SD; Börsch M
    Biochim Biophys Acta; 2012 Oct; 1817(10):1722-31. PubMed ID: 22503832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of the b-subunit in the ATP synthase from Escherichia coli.
    Diez M; Börsch M; Zimmermann B; Turina P; Dunn SD; Gräber P
    Biochemistry; 2004 Feb; 43(4):1054-64. PubMed ID: 14744151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk.
    Düser MG; Bi Y; Zarrabi N; Dunn SD; Börsch M
    J Biol Chem; 2008 Nov; 283(48):33602-10. PubMed ID: 18786919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both rotor and stator subunits are necessary for efficient binding of F1 to F0 in functionally assembled Escherichia coli ATP synthase.
    Krebstakies T; Zimmermann B; Gräber P; Altendorf K; Börsch M; Greie JC
    J Biol Chem; 2005 Sep; 280(39):33338-45. PubMed ID: 16085645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases.
    Sielaff H; Yanagisawa S; Frasch WD; Junge W; Börsch M
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30704145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
    Börsch M; Gräber P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):878-82. PubMed ID: 16042618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls.
    Börsch M
    IUBMB Life; 2013 Mar; 65(3):227-37. PubMed ID: 23378185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twisting and subunit rotation in single F(O)(F1)-ATP synthase.
    Sielaff H; Börsch M
    Philos Trans R Soc Lond B Biol Sci; 2013 Feb; 368(1611):20120024. PubMed ID: 23267178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase.
    Zimmermann B; Diez M; Zarrabi N; Gräber P; Börsch M
    EMBO J; 2005 Jun; 24(12):2053-63. PubMed ID: 15920483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling.
    Mitome N; Suzuki T; Hayashi S; Yoshida M
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12159-64. PubMed ID: 15302927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of single nucleotides to H+-ATP synthases observed by fluorescence resonance energy transfer.
    Steigmiller S; Zimmermann B; Diez M; Börsch M; Gräber P
    Bioelectrochemistry; 2004 Jun; 63(1-2):79-85. PubMed ID: 15110252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.
    Imamura H; Nhat KP; Togawa H; Saito K; Iino R; Kato-Yamada Y; Nagai T; Noji H
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15651-6. PubMed ID: 19720993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving FRET-based monitoring of single chemomechanical rotary motors at work.
    Börsch M; Wrachtrup J
    Chemphyschem; 2011 Feb; 12(3):542-53. PubMed ID: 21305683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulatory subunit ε in Escherichia coli F
    Sielaff H; Duncan TM; Börsch M
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):775-788. PubMed ID: 29932911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases.
    Börsch M
    Biol Chem; 2011 Jan; 392(1-2):135-42. PubMed ID: 21073359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise rotation of the gamma-subunit of EF(0)F(1)-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer.
    Börsch M; Diez M; Zimmermann B; Reuter R; Gräber P
    FEBS Lett; 2002 Sep; 527(1-3):147-52. PubMed ID: 12220651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy.
    Zimmermann B; Diez M; Börsch M; Gräber P
    Biochim Biophys Acta; 2006; 1757(5-6):311-9. PubMed ID: 16765907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.