These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22352702)
1. In situ microbial detection in Mojave Desert soil using native fluorescence. Smith HD; Duncan AG; Neary PL; Lloyd CR; Anderson AJ; Sims RC; McKay CP Astrobiology; 2012 Mar; 12(3):247-57. PubMed ID: 22352702 [TBL] [Abstract][Full Text] [Related]
2. Response of microorganisms to a simulated Martian environment. Hawrylewicz EJ; Hagen CA; Ehrlich R Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808 [TBL] [Abstract][Full Text] [Related]
3. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars. Aerts JW; Riedo A; Melton DJ; Martini S; Flahaut J; Meierhenrich UJ; Meinert C; Myrgorodska I; Lindner R; Ehrenfreund P Astrobiology; 2020 Jun; 20(6):766-784. PubMed ID: 32167834 [TBL] [Abstract][Full Text] [Related]
4. Constraints on the Metabolic Activity of Microorganisms in Atacama Surface Soils Inferred from Refractory Biomarkers: Implications for Martian Habitability and Biomarker Detection. Wilhelm MB; Davila AF; Parenteau MN; Jahnke LL; Abate M; Cooper G; Kelly ET; Parro García V; Villadangos MG; Blanco Y; Glass B; Wray JJ; Eigenbrode JL; Summons RE; Warren-Rhodes K Astrobiology; 2018 Jul; 18(7):955-966. PubMed ID: 30035640 [TBL] [Abstract][Full Text] [Related]
5. Extreme environments and exobiology. Friedmann EI Plant Biosyst; 1993; 127(3):369-76. PubMed ID: 11539430 [TBL] [Abstract][Full Text] [Related]
6. Antarctica as a Martian model. Vishniac WV; Mainzer SE Life Sci Space Res; 1973; 11():25-31. PubMed ID: 11998858 [TBL] [Abstract][Full Text] [Related]
7. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments. Scher S; Packer E; Sagan C Life Sci Space Res; 1964; 2():352-6. PubMed ID: 11883443 [TBL] [Abstract][Full Text] [Related]
8. Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran desert soil populations of Bacillus spp. with reference to B. subtilis strain 168. Nicholson WL; Law JF J Microbiol Methods; 1999 Feb; 35(1):13-21. PubMed ID: 10076626 [TBL] [Abstract][Full Text] [Related]
9. Subcritical water extractor for Mars analog soil analysis. Amashukeli X; Grunthaner FJ; Patrick SB; Yung PT Astrobiology; 2008 Jun; 8(3):597-604. PubMed ID: 18680410 [TBL] [Abstract][Full Text] [Related]
10. Exobiology and the effect of physical factors on micro-organisms. Imshenetsky AA; Abyzov SS; Voronov GT; Kuzjurina LA; Lysenko SV; Sotnikov GG; Fedorova RI Life Sci Space Res; 1967; 5():250-60. PubMed ID: 11973848 [TBL] [Abstract][Full Text] [Related]
11. New priorities in the robotic exploration of Mars: the case for in situ search for extant life. Davila AF; Skidmore M; Fairén AG; Cockell C; Schulze-Makuch D Astrobiology; 2010 Sep; 10(7):705-10. PubMed ID: 20929400 [No Abstract] [Full Text] [Related]
12. Survival and growth of potential microbial contaminants in severe environments. Hawrylewicz EJ; Hagen CA; Ehrlich R Life Sci Space Res; 1966; 4():166-75. PubMed ID: 11915886 [TBL] [Abstract][Full Text] [Related]
13. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection. Tauscher C; Schuerger AC; Nicholson WL Astrobiology; 2006 Aug; 6(4):592-605. PubMed ID: 16916285 [TBL] [Abstract][Full Text] [Related]
14. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia. Nicholson WL; Schuerger AC Astrobiology; 2005 Aug; 5(4):536-44. PubMed ID: 16078870 [TBL] [Abstract][Full Text] [Related]
15. On methods of detection of extraterrestrial life. Imshenetsky AA; Evdokimova MD; Sotnikov GG Life Sci Space Res; 1976; 14():345-9. PubMed ID: 12678119 [TBL] [Abstract][Full Text] [Related]
16. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions. Kerney KR; Schuerger AC Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388 [TBL] [Abstract][Full Text] [Related]
17. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682 [TBL] [Abstract][Full Text] [Related]
18. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds. Hagen CA; Hawrylewicz EJ; Anderson BT; Cephus ML Life Sci Space Res; 1970; 8():53-8. PubMed ID: 12664918 [TBL] [Abstract][Full Text] [Related]
19. Survival of microorganisms under the extreme conditions of the Atacama Desert. Dose K; Bieger-Dose A; Ernst B; Feister U; Gómez-Silva B; Klein A; Risi S; Stridde C Orig Life Evol Biosph; 2001 Jun; 31(3):287-303. PubMed ID: 11434107 [TBL] [Abstract][Full Text] [Related]
20. Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions. Navarro-González R; Iñiguez E; de la Rosa J; McKay CP Astrobiology; 2009 Oct; 9(8):703-15. PubMed ID: 19845443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]