These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22352759)

  • 1. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
    Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS
    Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
    Alexander C; Ivetac A; Liu X; Norimatsu Y; Serrano JR; Landstrom A; Sansom M; Dawson DC
    Biochemistry; 2009 Oct; 48(42):10078-88. PubMed ID: 19754156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR: what's it like inside the pore?
    Liu X; Smith SS; Dawson DC
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):69-75. PubMed ID: 14598388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator.
    Norimatsu Y; Ivetac A; Alexander C; O'Donnell N; Frye L; Sansom MS; Dawson DC
    Mol Pharmacol; 2012 Dec; 82(6):1042-55. PubMed ID: 22923500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
    Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC
    Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance.
    Linsdell P; Irving CL; Cowley EA; El Hiani Y
    Cell Mol Life Sci; 2021 Jun; 78(12):5213-5223. PubMed ID: 34023918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK; Smith SS; Choi AD; Richards NW; Strong TV; Drumm ML; Collins FS; Dawson DC
    Biophys J; 1998 Mar; 74(3):1320-32. PubMed ID: 9512029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
    El Hiani Y; Linsdell P
    J Biol Chem; 2015 Jun; 290(25):15855-15865. PubMed ID: 25944907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P
    Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Rubaiy HN; Linsdell P
    J Physiol Sci; 2015 May; 65(3):233-41. PubMed ID: 25673337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a region of strong discrimination in the pore of CFTR.
    McCarty NA; Zhang ZR
    Am J Physiol Lung Cell Mol Physiol; 2001 Oct; 281(4):L852-67. PubMed ID: 11557589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localizing a gate in CFTR.
    Gao X; Hwang TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Fatehi M; Linsdell P
    J Biol Chem; 2008 Mar; 283(10):6102-9. PubMed ID: 18167343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.