These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22352759)

  • 21. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway.
    Gao X; Hwang TC
    J Gen Physiol; 2016 May; 147(5):407-22. PubMed ID: 27114613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore.
    Li MS; Cowley EA; El Hiani Y; Linsdell P
    J Biol Chem; 2018 Apr; 293(15):5649-5658. PubMed ID: 29475947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore.
    Linsdell P
    Adv Exp Med Biol; 2017; 925():13-32. PubMed ID: 27311317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction.
    Smith SS; Liu X; Zhang ZR; Sun F; Kriewall TE; McCarty NA; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):407-31. PubMed ID: 11585852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore.
    Liu X; Zhang ZR; Fuller MD; Billingsley J; McCarty NA; Dawson DC
    Biophys J; 2004 Dec; 87(6):3826-41. PubMed ID: 15361410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics study of Cl
    Zeng ZW; Linsdell P; Pomès R
    Cell Mol Life Sci; 2023 Jan; 80(2):51. PubMed ID: 36694009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Architecture and functional properties of the CFTR channel pore.
    Linsdell P
    Cell Mol Life Sci; 2017 Jan; 74(1):67-83. PubMed ID: 27699452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Physiol; 2001 Feb; 531(Pt 1):51-66. PubMed ID: 11179391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel.
    Negoda A; El Hiani Y; Cowley EA; Linsdell P
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1049-1058. PubMed ID: 28235470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    Biochemistry; 2012 May; 51(19):3971-81. PubMed ID: 22545782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P; Evagelidis A; Hanrahan JW
    Biophys J; 2000 Jun; 78(6):2973-82. PubMed ID: 10827976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).
    Wang W; Linsdell P
    J Biol Chem; 2012 Mar; 287(13):10156-10165. PubMed ID: 22303012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
    Zhou JJ; Li MS; Qi J; Linsdell P
    J Gen Physiol; 2010 Mar; 135(3):229-45. PubMed ID: 20142516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.
    Cheung M; Akabas MH
    J Gen Physiol; 1997 Mar; 109(3):289-99. PubMed ID: 9089437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
    Cheung M; Akabas MH
    Biophys J; 1996 Jun; 70(6):2688-95. PubMed ID: 8744306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.