These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22352855)

  • 1. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells.
    Fujishima SH; Yasui R; Miki T; Ojida A; Hamachi I
    J Am Chem Soc; 2012 Mar; 134(9):3961-4. PubMed ID: 22352855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDAI-based chemical labeling of intact membrane proteins and its pulse-chase analysis under live cell conditions.
    Miki T; Fujishima SH; Komatsu K; Kuwata K; Kiyonaka S; Hamachi I
    Chem Biol; 2014 Aug; 21(8):1013-22. PubMed ID: 25126991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells.
    Tamura T; Tsukiji S; Hamachi I
    J Am Chem Soc; 2012 Feb; 134(4):2216-26. PubMed ID: 22220821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems.
    Tamura T; Song Z; Amaike K; Lee S; Yin S; Kiyonaka S; Hamachi I
    J Am Chem Soc; 2017 Oct; 139(40):14181-14191. PubMed ID: 28915034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein.
    Bradrick TD; Beechem JM; Howell EE
    Biochemistry; 1996 Sep; 35(35):11414-24. PubMed ID: 8784197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.
    Liu W; Li F; Chen X; Hou J; Yi L; Wu YW
    J Am Chem Soc; 2014 Mar; 136(12):4468-71. PubMed ID: 24598024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of membrane protein topology on the endoplasmic reticulum by a specific ligand in living cells.
    Ikeda M; Kida Y; Ikushiro S; Sakaguchi M
    J Biochem; 2005 Nov; 138(5):631-7. PubMed ID: 16272575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tight binding ligand approach to oligosaccharide-grafted protein.
    Totani K; Matsuo I; Ito Y
    Bioorg Med Chem Lett; 2004 May; 14(9):2285-9. PubMed ID: 15081026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.
    Strader MB; Chopra S; Jackson M; Smiley RD; Stinnett L; Wu J; Howell EE
    Biochemistry; 2004 Jun; 43(23):7403-12. PubMed ID: 15182183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive fluorescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA.
    Wei X; Lin W; Ma N; Luo F; Lin Z; Guo L; Qiu B; Chen G
    Chem Commun (Camb); 2012 Jun; 48(49):6184-6. PubMed ID: 22590712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine-18 click radiosynthesis and preclinical evaluation of a new 18F-labeled folic acid derivative.
    Ross TL; Honer M; Lam PY; Mindt TL; Groehn V; Schibli R; Schubiger PA; Ametamey SM
    Bioconjug Chem; 2008 Dec; 19(12):2462-70. PubMed ID: 19053298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical cell-surface receptor engineering using affinity-guided, multivalent organocatalysts.
    Wang H; Koshi Y; Minato D; Nonaka H; Kiyonaka S; Mori Y; Tsukiji S; Hamachi I
    J Am Chem Soc; 2011 Aug; 133(31):12220-8. PubMed ID: 21761940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry on hydrogen/deuterium exchange of dihydrofolate reductase: effects of ligand binding.
    Yamamoto T; Izumi S; Gekko K
    J Biochem; 2004 Jun; 135(6):663-71. PubMed ID: 15213241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
    Verkhivker GM; Rejto PA; Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Marrone T; Rose PW
    J Mol Recognit; 1999; 12(6):371-89. PubMed ID: 10611647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.