These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22352888)

  • 1. Optofluidic concentration: plasmonic nanostructure as concentrator and sensor.
    Escobedo C; Brolo AG; Gordon R; Sinton D
    Nano Lett; 2012 Mar; 12(3):1592-6. PubMed ID: 22352888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing.
    Measor P; Kühn S; Lunt EJ; Phillips BS; Hawkins AR; Schmidt H
    Opt Express; 2009 Dec; 17(26):24342-8. PubMed ID: 20052144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free detection with the liquid core optical ring resonator sensing platform.
    White IM; Zhu H; Suter JD; Fan X; Zourob M
    Methods Mol Biol; 2009; 503():139-65. PubMed ID: 19151939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of the optofluidic ring resonator: a versatile platform for label-free biological and chemical sensing.
    Suter JD; Fan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1042-4. PubMed ID: 19965134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A periodically coupled plasmon nanostructure for refractive index sensing.
    Briscoe JL; Cho SY
    Opt Express; 2011 Apr; 19(9):8815-20. PubMed ID: 21643134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale optofluidic sensor arrays.
    Mandal S; Erickson D
    Opt Express; 2008 Feb; 16(3):1623-31. PubMed ID: 18542241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing.
    Im H; Bantz KC; Lee SH; Johnson TW; Haynes CL; Oh SH
    Adv Mater; 2013 May; 25(19):2678-85. PubMed ID: 23436239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoholes as nanochannels: flow-through plasmonic sensing.
    Eftekhari F; Escobedo C; Ferreira J; Duan X; Girotto EM; Brolo AG; Gordon R; Sinton D
    Anal Chem; 2009 Jun; 81(11):4308-11. PubMed ID: 19408948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous gold plasmonic structures for sensing applications.
    Ruffato G; Romanato F; Garoli D; Cattarin S
    Opt Express; 2011 Jul; 19(14):13164-70. PubMed ID: 21747470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.
    Huang G; Bolaños Quiñones VA; Ding F; Kiravittaya S; Mei Y; Schmidt OG
    ACS Nano; 2010 Jun; 4(6):3123-30. PubMed ID: 20527797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays.
    Barik A; Otto LM; Yoo D; Jose J; Johnson TW; Oh SH
    Nano Lett; 2014; 14(4):2006-12. PubMed ID: 24646075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase sensitive sensor on plasmonic nanograting structures.
    Maisonneuve M; Kelly Od; Blanchard-Dionne AP; Patskovsky S; Meunier M
    Opt Express; 2011 Dec; 19(27):26318-24. PubMed ID: 22274216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Mar; 10(6):748-54. PubMed ID: 20221563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-8 polymer enclosed microchannels with interconnect and nanohole arrays as an optical detection device for biospecies.
    Westwood SM; Gray BL; Grist S; Huffman K; Jaffer S; Kavanagh KL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5652-5. PubMed ID: 19163999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity enhancement of guided-wave surface-plasmon resonance sensors.
    Lahav A; Auslender M; Abdulhalim I
    Opt Lett; 2008 Nov; 33(21):2539-41. PubMed ID: 18978913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-wavelength nanofluidics in photonic crystal sensors.
    Huang M; Yanik AA; Chang TY; Altug H
    Opt Express; 2009 Dec; 17(26):24224-33. PubMed ID: 20052133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface wave sensors based on nanometric layers of strongly absorbing materials.
    Zhang Y; Arnold C; Offermans P; Gómez Rivas J
    Opt Express; 2012 Apr; 20(9):9431-41. PubMed ID: 22535033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrays of recycled power TM polarized nano-antennas.
    Hattori HT; Li Z
    Opt Express; 2013 Jul; 21(14):16273-81. PubMed ID: 23938478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subwavelength focusing and guiding of surface plasmons.
    Yin L; Vlasko-Vlasov VK; Pearson J; Hiller JM; Hua J; Welp U; Brown DE; Kimball CW
    Nano Lett; 2005 Jul; 5(7):1399-402. PubMed ID: 16178246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.