BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22352958)

  • 1. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications.
    Yasuda T; Nakamura S; Honda Y; Kinugawa K; Lee SY; Watanabe M
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1783-90. PubMed ID: 22352958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
    Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M
    J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical properties of proton conducting membranes based on a protic ionic liquid.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Panero S; Scrosati B; Ohno H
    J Phys Chem B; 2007 Nov; 111(43):12462-7. PubMed ID: 17927237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton Conducting Membranes Based on Poly(Ionic Liquids) Having Phosphonium Counter-Cations.
    Isik M; Porcarelli L; Lago N; Zhu H; Forsyth M; Mecerreyes D
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29205639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented tetrasulfonated copoly(arylene ether sulfone)s: improving proton transport properties by extending the ionic sequence.
    Takamuku S; Weiber EA; Jannasch P
    ChemSusChem; 2013 Feb; 6(2):308-19. PubMed ID: 23307760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains.
    Takamuku S; Jannasch P
    Macromol Rapid Commun; 2011 Mar; 32(5):474-80. PubMed ID: 21433202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging individual proton-conducting spots on sulfonated multiblock-copolymer membrane under controlled hydrogen atmosphere by current-sensing atomic force microscopy.
    Hara M; Hattori D; Inukai J; Bae B; Hoshi T; Hara M; Miyatake K; Watanabe M
    J Phys Chem B; 2013 Apr; 117(14):3892-9. PubMed ID: 23484799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.
    Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonated Polymerized Ionic Liquid Block Copolymers.
    Meek KM; Elabd YA
    Macromol Rapid Commun; 2016 Jul; 37(14):1200-6. PubMed ID: 27125600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Casting Solvent on Interfacial Molecular Structure and Proton Transport Characteristics of Sulfonated Polyimide Thin Films.
    Nagao Y; Krishnan K; Goto R; Hara M; Nagano S
    Anal Sci; 2017; 33(1):35-39. PubMed ID: 28070072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Proton Transport in Diethylmethylammonium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-Based Composite Membranes with Triflic Acid and Diethylmethylamine-Rich Compositions.
    Shah AH; Rana UA; Zhu H; Li J; Vijayaraghavan R; Macfarlane DR; Forsyth M; Siddiqi HM
    J Phys Chem B; 2021 Oct; 125(39):11005-11016. PubMed ID: 34570507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.
    Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H
    Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.
    Hou H; Di Vona ML; Knauth P
    ChemSusChem; 2011 Nov; 4(11):1526-36. PubMed ID: 22006846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfonated Polyimide-Clay Thin Films for Energy Application.
    Ali F; Saeed S; Shah SS; Rahim F; Duclaux L; Levêque JM; Reinert L
    Recent Pat Nanotechnol; 2016; 10(3):221-230. PubMed ID: 27136932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of highly decoupled conductivity in protic ionic conductors.
    Wojnarowska Z; Wang Y; Paluch KJ; Sokolov AP; Paluch M
    Phys Chem Chem Phys; 2014 May; 16(19):9123-7. PubMed ID: 24699717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs).
    Ebrahimi M; Kujawski W; Fatyeyeva K; Kujawa J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion gels by self-assembly of a triblock copolymer in an ionic liquid.
    He Y; Boswell PG; Bühlmann P; Lodge TP
    J Phys Chem B; 2007 May; 111(18):4645-52. PubMed ID: 17474692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(arylene ether)s containing superacid groups as proton exchange membranes.
    Mikami T; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1714-21. PubMed ID: 20491452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes (adv. Mater. 26/2013).
    Zhang H; Li L; Möller M; Zhu X; Rueda JJ; Rosenthal M; Ivanov DA
    Adv Mater; 2013 Jul; 25(26):3543-8. PubMed ID: 23836629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.