These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22352964)

  • 1. Electronic barcoding of a viral gene at the single-molecule level.
    Singer A; Rapireddy S; Ly DH; Meller A
    Nano Lett; 2012 Mar; 12(3):1722-8. PubMed ID: 22352964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA sequencing and bar-coding using solid-state nanopores.
    Atas E; Singer A; Meller A
    Electrophoresis; 2012 Dec; 33(23):3437-47. PubMed ID: 23109189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barcode extension for analysis and reconstruction of structures.
    Myhrvold C; Baym M; Hanikel N; Ong LL; Gootenberg JS; Yin P
    Nat Commun; 2017 Mar; 8():14698. PubMed ID: 28287117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programming Temporal DNA Barcodes for Single-Molecule Fingerprinting.
    Shah S; Dubey AK; Reif J
    Nano Lett; 2019 Apr; 19(4):2668-2673. PubMed ID: 30896178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting topological variations of DNA at single-molecule level.
    Liu K; Pan C; Kuhn A; Nievergelt AP; Fantner GE; Milenkovic O; Radenovic A
    Nat Commun; 2019 Jan; 10(1):3. PubMed ID: 30602774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification.
    Vernick S; Trocchia SM; Warren SB; Young EF; Bouilly D; Gonzalez RL; Nuckolls C; Shepard KL
    Nat Commun; 2017 May; 8():15450. PubMed ID: 28516911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable DNA Nanoswitch Sensing with Solid-State Nanopores.
    Beamish E; Tabard-Cossa V; Godin M
    ACS Sens; 2019 Sep; 4(9):2458-2464. PubMed ID: 31449750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.
    Bell NA; Keyser UF
    Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital counting of nucleic acid targets using solid-state nanopores.
    Beamish E; Tabard-Cossa V; Godin M
    Nanoscale; 2020 Sep; 12(34):17833-17840. PubMed ID: 32832949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices.
    Østergaard PF; Matteucci M; Reisner W; Taboryski R
    Analyst; 2013 Feb; 138(4):1249-55. PubMed ID: 23314250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding.
    Yu H; Kong L; Li Q
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1336-9. PubMed ID: 25109631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species.
    Liu J; Möller M; Gao LM; Zhang DQ; Li DZ
    Mol Ecol Resour; 2011 Jan; 11(1):89-100. PubMed ID: 21429104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution.
    Oguchi Y; Shintaku H; Uemura S
    Commun Biol; 2020 Dec; 3(1):788. PubMed ID: 33339962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Barcoding using LATE-PCR and Lights-On/Lights-Off probes: identification of nematode species in a closed-tube reaction.
    Rice LM; Reis AH; Wangh LJ
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(2):1358-63. PubMed ID: 25109627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet barcoding for massively parallel single-molecule deep sequencing.
    Lan F; Haliburton JR; Yuan A; Abate AR
    Nat Commun; 2016 Jun; 7():11784. PubMed ID: 27353563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.
    Luo A; Zhang A; Ho SY; Xu W; Zhang Y; Shi W; Cameron SL; Zhu C
    BMC Genomics; 2011 Jan; 12():84. PubMed ID: 21276253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations and challenges of genetic barcode quantification.
    Thielecke L; Aranyossy T; Dahl A; Tiwari R; Roeder I; Geiger H; Fehse B; Glauche I; Cornils K
    Sci Rep; 2017 Mar; 7():43249. PubMed ID: 28256524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.
    An JH; Kim TH; Oh BK; Choi JW
    J Nanosci Nanotechnol; 2012 Jan; 12(1):764-8. PubMed ID: 22524054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA barcodes: methods and protocols.
    Kress WJ; Erickson DL
    Methods Mol Biol; 2012; 858():3-8. PubMed ID: 22684949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some 'ant'swers: Application of a layered barcode approach to problems in ant taxonomy.
    Paknia O; Bergmann T; Hadrys H
    Mol Ecol Resour; 2015 Nov; 15(6):1262-74. PubMed ID: 25712507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.