These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 22353)
1. Functional properties of normal and sickle cell hemoglobins in polyethylene glycol 6000. Amiconi G; Bonaventura C; Bonaventura J; Antonini E Biochim Biophys Acta; 1977 Dec; 495(2):279-86. PubMed ID: 22353 [TBL] [Abstract][Full Text] [Related]
2. Hemoglobin solubility as a function of fractional oxygen saturation for hemoglobins in polyethylene glycol: a sickle hemoglobin model. Haire RN; Tisel WA; Niazi G; Rosenberg A; Gill SJ; Richey B Biochem Biophys Res Commun; 1981 Jul; 101(1):177-82. PubMed ID: 7284000 [No Abstract] [Full Text] [Related]
3. Effect of 2,3-diphosphoglycerate and inositol hexaphosphate on the stability of normal sickle hemoglobins. Adachi K; Asakura T Biochemistry; 1974 Nov; 13(24):4976-82. PubMed ID: 4433531 [No Abstract] [Full Text] [Related]
4. Polyphasic linkage between protein solubility and ligand binding in the hemoglobin-polyethylene glycol system. Tisel WA; Haire RN; White JG; Rosenberg A; Middaugh CR J Biol Chem; 1980 Oct; 255(19):8975-8. PubMed ID: 7410402 [TBL] [Abstract][Full Text] [Related]
5. High-resolution proton nuclear magnetic resonance studies of sickle cell hemoglobin. Fung LW; Lin KL; Ho C Biochemistry; 1975 Jul; 14(15):3424-30. PubMed ID: 238591 [TBL] [Abstract][Full Text] [Related]
6. On the precipitation of proteins by polymers: the hemoglobin--polyethylene glycol system. Haire RN; Tisel WA; White JG; Rosenberg A Biopolymers; 1984 Dec; 23(12):2761-79. PubMed ID: 6084525 [No Abstract] [Full Text] [Related]
7. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia. Ueda Y; Bookchin RM J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043 [TBL] [Abstract][Full Text] [Related]
8. Recombinant human hemoglobins designed for gene therapy of sickle cell disease. McCune SL; Reilly MP; Chomo MJ; Asakura T; Townes TM Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9852-6. PubMed ID: 7937904 [TBL] [Abstract][Full Text] [Related]
9. Studies of the fiber to crystal transition of sickle cell hemoglobin in acidic polyethylene glycol. Vassar RJ; Potel MJ; Josephs R J Mol Biol; 1982 May; 157(2):395-412. PubMed ID: 7108964 [No Abstract] [Full Text] [Related]
10. Effect of organic phosphates on the sulfhydryl reactivities of oxyhemoglobins A and S. Okonjo K J Biol Chem; 1980 Apr; 255(8):3274-7. PubMed ID: 7364744 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. Adachi K; Asakura T Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320 [TBL] [Abstract][Full Text] [Related]
12. Acylation of human hemoglobin with polyoxyethylene derivatives. Leonard M; Dellacherie E Biochim Biophys Acta; 1984 Dec; 791(2):219-25. PubMed ID: 6509065 [TBL] [Abstract][Full Text] [Related]
13. Asymmetrical hemoglobin hybrids. An approach to the study of subunit interactions. Bunn HF; McDonough M Biochemistry; 1974 Feb; 13(5):988-93. PubMed ID: 4855919 [No Abstract] [Full Text] [Related]
14. Comparisons of the kinetic stability of normal and sickle cell human hemoglobins at extremes of pH. Jones DD; McGrath WP; Carroll D; Steinhardt J Biochemistry; 1973 Sep; 12(20):3818-24. PubMed ID: 4745648 [No Abstract] [Full Text] [Related]
15. Circular dichroism as a probe of the allosteric R in equilibrium T transformation in hemoglobins and modified hemoglobins. Plese CF; Amma EL Biochem Biophys Res Commun; 1977 Jun; 76(3):691-7. PubMed ID: 20079 [No Abstract] [Full Text] [Related]
16. Structure of deoxyhemoglobin: ionizable groups and polyethylene glycol. Saroff HA Proteins; 2003 Feb; 50(2):329-40. PubMed ID: 12486726 [TBL] [Abstract][Full Text] [Related]
17. Purification and functional properties of the hemoglobin components from the rat (Wistar). Condò SG; Giardina B; Barra D; Gill SJ; Brunori M Eur J Biochem; 1981 May; 116(2):243-7. PubMed ID: 7250126 [TBL] [Abstract][Full Text] [Related]
18. Structural basis and dynamics of the fiber-to-crystal transition of sickle cell hemoglobin. Makinen MW; Sigountos CW J Mol Biol; 1984 Sep; 178(2):439-76. PubMed ID: 6492156 [TBL] [Abstract][Full Text] [Related]
19. Anion modulation of the negative Bohr effect of haemoglobin from a primitive amphibian. Bonaventura C; Sullivan B; Bonaventura J; Bourne S Nature; 1977 Feb; 265(5593):474-6. PubMed ID: 13309 [No Abstract] [Full Text] [Related]