BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22353050)

  • 1. Site-controlled application of electric potential on a conducting polymer "canvas".
    Ishiguro Y; Inagi S; Fuchigami T
    J Am Chem Soc; 2012 Mar; 134(9):4034-6. PubMed ID: 22353050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient doping of conducting polymer films by means of bipolar electrochemistry.
    Ishiguro Y; Inagi S; Fuchigami T
    Langmuir; 2011 Jun; 27(11):7158-62. PubMed ID: 21568350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.
    Lee HJ; Lee J; Park SM
    J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ Wilhelmy balance surface energy determination of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) during electrochemical doping-dedoping.
    Wang X; Ederth T; Inganäs O
    Langmuir; 2006 Oct; 22(22):9287-94. PubMed ID: 17042544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical evaluation of poly(3,4-ethylenedioxythiophene) films doped with bacteria based on viability analysis.
    Le DQ; Tokonami S; Nishino T; Shiigi H; Nagaoka T
    Bioelectrochemistry; 2015 Oct; 105():50-5. PubMed ID: 25984659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Resettable Keypad Lock with Visible Readout Based on Closed Bipolar Electrochemistry and Electrochromic Poly(3-methylthiophene) Films.
    Wang L; Lian W; Liu H
    Chemistry; 2016 Mar; 22(14):4825-32. PubMed ID: 26914514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives.
    Lee CJ; Wang H; Young M; Li S; Cheng F; Cong H; Cheng G
    Acta Biomater; 2018 Jul; 75():161-170. PubMed ID: 29879552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric Determination of Ascorbic Acid on an Au Electrode Modified by a Composite Film of Poly(3,4-ethylenedioxythiophene) and Superconductive Carbon Black.
    Zhou X; He K; Wang Y; Zheng H; Suye S
    Anal Sci; 2015; 31(5):429-36. PubMed ID: 25958873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer films on electrodes: investigation of ion transport at poly(3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy.
    Yang N; Zoski CG
    Langmuir; 2006 Dec; 22(25):10338-47. PubMed ID: 17129001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA detection using functionalized conducting polymers.
    Travas-Sejdic J; Peng H; Yu HH; Luo SC
    Methods Mol Biol; 2011; 751():437-52. PubMed ID: 21674347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition.
    Hohnholz D; MacDiarmid AG; Sarno DM; Jones WE
    Chem Commun (Camb); 2001 Dec; (23):2444-5. PubMed ID: 12240006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes.
    Baek S; Green RA; Poole-Warren LA
    J Biomed Mater Res A; 2014 Aug; 102(8):2743-54. PubMed ID: 24027227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices.
    Yang J; Lipkin K; Martin DC
    J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic cell without liquid junction for potentiometric determination of copper.
    Migdalski J; Błaz T; Zrałka B; Lewenstam A
    Anal Chim Acta; 2007 Jul; 594(2):204-10. PubMed ID: 17586116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C.
    Nie T; Xu JK; Lu LM; Zhang KX; Bai L; Wen YP
    Biosens Bioelectron; 2013 Dec; 50():244-50. PubMed ID: 23871872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer.
    Harman DG; Gorkin R; Stevens L; Thompson B; Wagner K; Weng B; Chung JH; In Het Panhuis M; Wallace GG
    Acta Biomater; 2015 Mar; 14():33-42. PubMed ID: 25484333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application.
    Kang YL; Ibrahim S; Pichiah S
    Bioresour Technol; 2015; 189():364-369. PubMed ID: 25913883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylenedioxythiophene) and poly(vinyl chloride) based membranes.
    Kisiel A; Michalska A; Maksymiuk K
    Bioelectrochemistry; 2007 Sep; 71(1):75-80. PubMed ID: 17107827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Deep Doping of Vapor-Phase Polymerized Poly(3,4-ethylenedioxythiophene)/Ionic Liquid Supercapacitors.
    Karlsson C; Nicholas J; Evans D; Forsyth M; Strømme M; Sjödin M; Howlett PC; Pozo-Gonzalo C
    ChemSusChem; 2016 Aug; 9(16):2112-21. PubMed ID: 27325487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.