These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22353170)

  • 1. The dynamic kinetic resolution of azlactones with thiol nucleophiles catalyzed by arylated, deoxygenated cinchona alkaloids.
    Rodríguez-Docampo Z; Quigley C; Tallon S; Connon SJ
    J Org Chem; 2012 Mar; 77(5):2407-14. PubMed ID: 22353170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-association-free dimeric cinchona alkaloid organocatalysts: unprecedented catalytic activity, enantioselectivity and catalyst recyclability in dynamic kinetic resolution of racemic azlactones.
    Lee JW; Ryu TH; Oh JS; Bae HY; Jang HB; Song CE
    Chem Commun (Camb); 2009 Dec; (46):7224-6. PubMed ID: 19921037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organocatalytic asymmetric addition of alcohols and thiols to activated electrophiles: efficient dynamic kinetic resolution and desymmetrization protocols.
    Peschiulli A; Quigley C; Tallon S; Gun'ko YK; Connon SJ
    J Org Chem; 2008 Aug; 73(16):6409-12. PubMed ID: 18646859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-association free bifunctional thiourea organocatalysts: synthesis of chiral α-amino acids via dynamic kinetic resolution of racemic azlactones.
    Oh JS; Lee JW; Ryu TH; Lee JH; Song CE
    Org Biomol Chem; 2012 Feb; 10(5):1052-5. PubMed ID: 22159406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective synthesis of α-deuterium labelled chiral α-amino acids via dynamic kinetic resolution of racemic azlactones.
    Oh JS; Kim KI; Song CE
    Org Biomol Chem; 2011 Dec; 9(23):7983-5. PubMed ID: 21952931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective synthesis of AG-041R by using N-heteroarenesulfonyl cinchona alkaloid amides as organocatalysts.
    Hara N; Nakamura S; Sano M; Tamura R; Funahashi Y; Shibata N
    Chemistry; 2012 Jul; 18(30):9276-80. PubMed ID: 22736544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cinchona alkaloid-lewis acid catalyst systems for enantioselective ketene-aldehyde cycloadditions.
    Zhu C; Shen X; Nelson SG
    J Am Chem Soc; 2004 May; 126(17):5352-3. PubMed ID: 15113194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly tunable arylated cinchona alkaloids as bifunctional catalysts.
    Quigley C; Rodríguez-Docampo Z; Connon SJ
    Chem Commun (Camb); 2012 Feb; 48(10):1443-5. PubMed ID: 21897955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric synthesis of chiral aldehydes by conjugate additions with bifunctional organocatalysis by cinchona alkaloids.
    Wu F; Hong R; Khan J; Liu X; Deng L
    Angew Chem Int Ed Engl; 2006 Jun; 45(26):4301-5. PubMed ID: 16739143
    [No Abstract]   [Full Text] [Related]  

  • 10. A novel C-5' substituted cinchona alkaloid-derived catalyst promotes additions of alkyl thiols to nitroolefins with excellent enantioselectivity.
    Palacio C; Connon SJ
    Chem Commun (Camb); 2012 Mar; 48(23):2849-51. PubMed ID: 22322277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organocatalytic asymmetric destruction of 1-benzylated Reissert compounds catalysed by quaternary cinchona alkaloids.
    Frisch K; Jørgensen KA
    Org Biomol Chem; 2007 Sep; 5(18):2966-74. PubMed ID: 17728863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved asymmetric S(N)Ar reaction of beta-dicarbonyl compounds catalyzed by quaternary ammonium salts derived from cinchona alkaloids.
    Kobbelgaard S; Bella M; Jørgensen KA
    J Org Chem; 2006 Jun; 71(13):4980-7. PubMed ID: 16776530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organocatalytic enantioselective addition of thiols to ketimines derived from isatins.
    Nakamura S; Takahashi S; Nakane D; Masuda H
    Org Lett; 2015 Jan; 17(1):106-9. PubMed ID: 25526427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective synthesis of optically active cis-β-thio-α-amino acid derivatives through an organocatalytic cascade thio-Michael/ring opening process.
    Geng ZC; Li N; Chen J; Huang XF; Wu B; Liu GG; Wang XW
    Chem Commun (Camb); 2012 May; 48(39):4713-5. PubMed ID: 22473305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective synthesis of 3,4-dihydropyran-2-ones by domino Michael addition and lactonization with new asymmetric organocatalysts: cinchona-alkaloid-derived chiral quaternary ammonium phenoxides.
    Tozawa T; Nagao H; Yamane Y; Mukaiyama T
    Chem Asian J; 2007 Jan; 2(1):123-34. PubMed ID: 17441145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric addition of indoles to isatins catalysed by bifunctional modified cinchona alkaloid catalysts.
    Chauhan P; Chimni SS
    Chemistry; 2010 Jul; 16(26):7709-13. PubMed ID: 20533467
    [No Abstract]   [Full Text] [Related]  

  • 17. Enantioselective organocatalytic oxaziridination of N-tosyl aldimine catalyzed by Cinchona alkaloid-ester derivatives.
    Jin Y; Zhang T; Zhang W; Chang S; Feng B
    Chirality; 2014 Mar; 26(3):150-4. PubMed ID: 24453177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enantioselective Michael addition of 3-arylthio- and 3-alkylthiooxindoles to nitroolefins catalyzed by a simple cinchona alkaloid derived phosphoramide.
    Gao WM; Yu JS; Zhao YL; Liu YL; Zhou F; Wu HH; Zhou J
    Chem Commun (Camb); 2014 Dec; 50(96):15179-82. PubMed ID: 25335923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic enantioselective sulfinyl transfer using cinchona alkaloid catalysts.
    Peltier HM; Evans JW; Ellman JA
    Org Lett; 2005 Apr; 7(9):1733-6. PubMed ID: 15844893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Michael addition mediated by novel cinchona alkaloid-derived bifunctional catalysts containing sulfonamides.
    Luo J; Xu LW; Hay RA; Lu Y
    Org Lett; 2009 Jan; 11(2):437-40. PubMed ID: 19072133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.