BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22353243)

  • 21. Application of fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design to identify novel microM leads for the development of nM BACE-1 (beta-site APP cleaving enzyme 1) inhibitors.
    Wang YS; Strickland C; Voigt JH; Kennedy ME; Beyer BM; Senior MM; Smith EM; Nechuta TL; Madison VS; Czarniecki M; McKittrick BA; Stamford AW; Parker EM; Hunter JC; Greenlee WJ; Wyss DF
    J Med Chem; 2010 Feb; 53(3):942-50. PubMed ID: 20043700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel prostaglandin D synthase inhibitors generated by fragment-based drug design.
    Hohwy M; Spadola L; Lundquist B; Hawtin P; Dahmén J; Groth-Clausen I; Nilsson E; Persdotter S; von Wachenfeldt K; Folmer RH; Edman K
    J Med Chem; 2008 Apr; 51(7):2178-86. PubMed ID: 18341273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors.
    Wyss DF; Wang YS; Eaton HL; Strickland C; Voigt JH; Zhu Z; Stamford AW
    Top Curr Chem; 2012; 317():83-114. PubMed ID: 21647837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aroma WaterLOGSY: a fast and sensitive screening tool for drug discovery.
    Hu J; Eriksson PO; Kern G
    Magn Reson Chem; 2010 Dec; 48(12):909-11. PubMed ID: 21038321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening protein-small molecule interactions by NMR.
    Davis B
    Methods Mol Biol; 2013; 1008():389-413. PubMed ID: 23729260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting norovirus infection-multivalent entry inhibitor design based on NMR experiments.
    Rademacher C; Guiard J; Kitov PI; Fiege B; Dalton KP; Parra F; Bundle DR; Peters T
    Chemistry; 2011 Jun; 17(27):7442-53. PubMed ID: 21567493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorine local environment: from screening to drug design.
    Vulpetti A; Dalvit C
    Drug Discov Today; 2012 Aug; 17(15-16):890-7. PubMed ID: 22480871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scoring functions for fragment-based drug discovery.
    Wang JC; Lin JH
    Methods Mol Biol; 2015; 1289():101-15. PubMed ID: 25709036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand specificity, privileged substructures and protein druggability from fragment-based screening.
    Barelier S; Krimm I
    Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.
    Peng C; Frommlet A; Perez M; Cobas C; Blechschmidt A; Dominguez S; Lingel A
    J Med Chem; 2016 Apr; 59(7):3303-10. PubMed ID: 26964888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fragment-based approaches and computer-aided drug discovery.
    Rognan D
    Top Curr Chem; 2012; 317():201-22. PubMed ID: 21710380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput nuclear magnetic resonance-based screening.
    Hajduk PJ; Gerfin T; Boehlen JM; Häberli M; Marek D; Fesik SW
    J Med Chem; 1999 Jul; 42(13):2315-7. PubMed ID: 10395471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational methods for fragment-based ligand design: growing and linking.
    Bienstock RJ
    Methods Mol Biol; 2015; 1289():119-35. PubMed ID: 25709037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand-Orientation Based Fragment Selection in STD NMR Screening.
    Cala O; Krimm I
    J Med Chem; 2015 Nov; 58(21):8739-42. PubMed ID: 26492576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent progress in fragment-based lead discovery.
    Schulz MN; Hubbard RE
    Curr Opin Pharmacol; 2009 Oct; 9(5):615-21. PubMed ID: 19477685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and evaluation of fragment-like estrogen receptor tetrahydroisoquinoline ligands from a scaffold-detection approach.
    Möcklinghoff S; van Otterlo WA; Rose R; Fuchs S; Zimmermann TJ; Dominguez Seoane M; Waldmann H; Ottmann C; Brunsveld L
    J Med Chem; 2011 Apr; 54(7):2005-11. PubMed ID: 21381753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using NMR for ligand discovery and optimization.
    Villar HO; Yan J; Hansen MR
    Curr Opin Chem Biol; 2004 Aug; 8(4):387-91. PubMed ID: 15288248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protocol for fragment hopping.
    Teuscher KB; Ji H
    Methods Mol Biol; 2015; 1289():57-73. PubMed ID: 25709033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular complexity and fragment-based drug discovery: ten years on.
    Leach AR; Hann MM
    Curr Opin Chem Biol; 2011 Aug; 15(4):489-96. PubMed ID: 21665521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery.
    Wu B; Zhang Z; Noberini R; Barile E; Giulianotti M; Pinilla C; Houghten RA; Pasquale EB; Pellecchia M
    Chem Biol; 2013 Jan; 20(1):19-33. PubMed ID: 23352136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.