BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22353245)

  • 1. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster.
    Swarup S; Harbison ST; Hahn LE; Morozova TV; Yamamoto A; Mackay TF; Anholt RR
    Genet Res (Camb); 2012 Feb; 94(1):9-20. PubMed ID: 22353245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster.
    Yamamoto A; Anholt RR; MacKay TF
    Genet Res (Camb); 2009 Dec; 91(6):373-82. PubMed ID: 19968911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior.
    He X; Zhou S; St Armour GE; Mackay TF; Anholt RR
    Genes Brain Behav; 2016 Feb; 15(2):280-90. PubMed ID: 26678546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The early developmental gene Semaphorin 5c contributes to olfactory behavior in adult Drosophila.
    Rollmann SM; Yamamoto A; Goossens T; Zwarts L; Callaerts-VĂ©gh Z; Callaerts P; Norga K; Mackay TF; Anholt RR
    Genetics; 2007 Jun; 176(2):947-56. PubMed ID: 17435226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster.
    Sambandan D; Yamamoto A; Fanara JJ; Mackay TF; Anholt RR
    Genetics; 2006 Nov; 174(3):1349-63. PubMed ID: 17028343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epistatic interactions between smell-impaired loci in Drosophila melanogaster.
    Fedorowicz GM; Fry JD; Anholt RR; Mackay TF
    Genetics; 1998 Apr; 148(4):1885-91. PubMed ID: 9560402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics of odor-guided behavior in Drosophila melanogaster.
    Anholt RR; Fanara JJ; Fedorowicz GM; Ganguly I; Kulkarni NH; Mackay TF; Rollmann SM
    Chem Senses; 2001 Feb; 26(2):215-21. PubMed ID: 11238254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
    Shorter J; Couch C; Huang W; Carbone MA; Peiffer J; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3555-63. PubMed ID: 26100892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High efficiency of a double-screening method on single P-element insertion lines to identify quantitative trait mutants in Drosophila melanogaster.
    Martin F; Kim MS; Gomez-Diaz C; Hovemann B; Alcorta E
    Genetica; 2006; 128(1-3):359-72. PubMed ID: 17028964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex genetic architecture of Drosophila aggressive behavior.
    Zwarts L; Magwire MM; Carbone MA; Versteven M; Herteleer L; Anholt RR; Callaerts P; Mackay TF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17070-5. PubMed ID: 21949384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epistasis dominates the genetic architecture of Drosophila quantitative traits.
    Huang W; Richards S; Carbone MA; Zhu D; Anholt RR; Ayroles JF; Duncan L; Jordan KW; Lawrence F; Magwire MM; Warner CB; Blankenburg K; Han Y; Javaid M; Jayaseelan J; Jhangiani SN; Muzny D; Ongeri F; Perales L; Wu YQ; Zhang Y; Zou X; Stone EA; Gibbs RA; Mackay TF
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15553-9. PubMed ID: 22949659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epistasis for quantitative traits in Drosophila.
    Mackay TF
    Methods Mol Biol; 2015; 1253():47-70. PubMed ID: 25403527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster.
    Anholt RR; Lyman RF; Mackay TF
    Genetics; 1996 May; 143(1):293-301. PubMed ID: 8722782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetic analysis of sleep in Drosophila melanogaster.
    Harbison ST; Sehgal A
    Genetics; 2008 Apr; 178(4):2341-60. PubMed ID: 18430954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster.
    Yamamoto A; Zwarts L; Callaerts P; Norga K; Mackay TF; Anholt RR
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12393-8. PubMed ID: 18713854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scribble is essential for olfactory behavior in Drosophila melanogaster.
    Ganguly I; Mackay TF; Anholt RR
    Genetics; 2003 Aug; 164(4):1447-57. PubMed ID: 12930751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic architecture of odor-guided behavior in Drosophila melanogaster.
    Anholt RR; Mackay TF
    Behav Genet; 2001 Jan; 31(1):17-27. PubMed ID: 11529271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior.
    Swarup S; Huang W; Mackay TF; Anholt RR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1017-22. PubMed ID: 23277560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcriptional network associated with natural variation in Drosophila aggressive behavior.
    Edwards AC; Ayroles JF; Stone EA; Carbone MA; Lyman RF; Mackay TF
    Genome Biol; 2009; 10(7):R76. PubMed ID: 19607677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome.
    Anholt RR; Dilda CL; Chang S; Fanara JJ; Kulkarni NH; Ganguly I; Rollmann SM; Kamdar KP; Mackay TF
    Nat Genet; 2003 Oct; 35(2):180-4. PubMed ID: 12958599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.