These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22353393)
1. Modulation of spiral-wave dynamics and spontaneous activity in a fibroblast/myocyte heterocellular tissue--a computational study. Greisas A; Zlochiver S IEEE Trans Biomed Eng; 2012 May; 59(5):1398-407. PubMed ID: 22353393 [TBL] [Abstract][Full Text] [Related]
2. Electrophysiological modeling of fibroblasts and their interaction with myocytes. Sachse FB; Moreno AP; Abildskov JA Ann Biomed Eng; 2008 Jan; 36(1):41-56. PubMed ID: 17999190 [TBL] [Abstract][Full Text] [Related]
3. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Kohl P; Camelliti P; Burton FL; Smith GL J Electrocardiol; 2005 Oct; 38(4 Suppl):45-50. PubMed ID: 16226073 [TBL] [Abstract][Full Text] [Related]
4. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544 [TBL] [Abstract][Full Text] [Related]
5. A model of electrical conduction in cardiac tissue including fibroblasts. Sachse FB; Moreno AP; Seemann G; Abildskov JA Ann Biomed Eng; 2009 May; 37(5):874-89. PubMed ID: 19283480 [TBL] [Abstract][Full Text] [Related]
6. Turbulent states and their transitions in mathematical models for ventricular tissue: the effects of random interstitial fibroblasts. Nayak AR; Pandit R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032720. PubMed ID: 26465511 [TBL] [Abstract][Full Text] [Related]
7. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge. Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688 [TBL] [Abstract][Full Text] [Related]
8. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Gaudesius G; Miragoli M; Thomas SP; Rohr S Circ Res; 2003 Sep; 93(5):421-8. PubMed ID: 12893743 [TBL] [Abstract][Full Text] [Related]
9. The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Greisas A; Zlochiver S Cardiovasc Eng Technol; 2016 Sep; 7(3):290-304. PubMed ID: 27150222 [TBL] [Abstract][Full Text] [Related]
10. A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts. MacCannell KA; Bazzazi H; Chilton L; Shibukawa Y; Clark RB; Giles WR Biophys J; 2007 Jun; 92(11):4121-32. PubMed ID: 17307821 [TBL] [Abstract][Full Text] [Related]
11. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Xie Y; Garfinkel A; Weiss JN; Qu Z Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H775-84. PubMed ID: 19482965 [TBL] [Abstract][Full Text] [Related]
12. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue. Steinberg BE; Glass L; Shrier A; Bub G Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709 [TBL] [Abstract][Full Text] [Related]
14. Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Tveito A; Lines G; Artebrant R; Skavhaug O; Maleckar MM Math Biosci; 2011 Apr; 230(2):79-86. PubMed ID: 21296091 [TBL] [Abstract][Full Text] [Related]
15. Nonequilibrium arrhythmic states and transitions in a mathematical model for diffuse fibrosis in human cardiac tissue. Majumder R; Nayak AR; Pandit R PLoS One; 2012; 7(10):e45040. PubMed ID: 23071505 [TBL] [Abstract][Full Text] [Related]
16. Changes in the fluctuation of the contraction rhythm of spontaneously beating cardiac myocytes in cultures with and without cardiac fibroblasts. Hachiro T; Kawahara K; Sato R; Yamauchi Y; Matsuyama D Biosystems; 2007; 90(3):707-15. PubMed ID: 17418939 [TBL] [Abstract][Full Text] [Related]
17. Pacemaker activity resulting from the coupling with nonexcitable cells. Jacquemet V Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011908. PubMed ID: 16907128 [TBL] [Abstract][Full Text] [Related]
18. Role of gap junctions in the propagation of the cardiac action potential. Rohr S Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351 [TBL] [Abstract][Full Text] [Related]
19. Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Bartocci E; Singh R; von Stein FB; Amedome A; Caceres AJ; Castillo J; Closser E; Deards G; Goltsev A; Ines RS; Isbilir C; Marc JK; Moore D; Pardi D; Sadhu S; Sanchez S; Sharma P; Singh A; Rogers J; Wolinetz A; Grosso-Applewhite T; Zhao K; Filipski AB; Gilmour RF; Grosu R; Glimm J; Smolka SA; Cherry EM; Clarke EM; Griffeth N; Fenton FH Adv Physiol Educ; 2011 Dec; 35(4):427-37. PubMed ID: 22139782 [TBL] [Abstract][Full Text] [Related]
20. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Clayton RH; Holden AV Prog Biophys Mol Biol; 2004; 85(2-3):473-99. PubMed ID: 15142758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]