These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22353718)

  • 21. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding.
    Zhou M; Morgner N; Barrera NP; Politis A; Isaacson SC; Matak-Vinković D; Murata T; Bernal RA; Stock D; Robinson CV
    Science; 2011 Oct; 334(6054):380-385. PubMed ID: 22021858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases.
    Mazhab-Jafari MT; Rubinstein JL
    Sci Adv; 2016 Jul; 2(7):e1600725. PubMed ID: 27532044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
    Minagawa Y; Ueno H; Hara M; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R
    J Biol Chem; 2013 Nov; 288(45):32700-32707. PubMed ID: 24089518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotary ATPases--dynamic molecular machines.
    Stewart AG; Laming EM; Sobti M; Stock D
    Curr Opin Struct Biol; 2014 Apr; 25():40-8. PubMed ID: 24878343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe.
    Furuike S; Nakano M; Adachi K; Noji H; Kinosita K; Yokoyama K
    Nat Commun; 2011; 2():233. PubMed ID: 21407199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP hydrolysis and synthesis of a rotary motor V-ATPase from Thermus thermophilus.
    Nakano M; Imamura H; Toei M; Tamakoshi M; Yoshida M; Yokoyama K
    J Biol Chem; 2008 Jul; 283(30):20789-96. PubMed ID: 18492667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus.
    Kishikawa J; Ibuki T; Nakamura S; Nakanishi A; Minamino T; Miyata T; Namba K; Konno H; Ueno H; Imada K; Yokoyama K
    PLoS One; 2013; 8(5):e64695. PubMed ID: 23724081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stator structure and subunit composition of the V(1)/V(0) Na(+)-ATPase of the thermophilic bacterium Caloramator fervidus.
    Ubbink-Kok T; Boekema EJ; van Breemen JF; Brisson A; Konings WN; Lolkema JS
    J Mol Biol; 2000 Feb; 296(1):311-21. PubMed ID: 10656834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotational mechanism of Enterococcus hirae V1-ATPase by crystal-structure and single-molecule analyses.
    Iino R; Ueno H; Minagawa Y; Suzuki K; Murata T
    Curr Opin Struct Biol; 2015 Apr; 31():49-56. PubMed ID: 25796033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cryo-EM analysis of a domain antibody bound rotary ATPase complex.
    Davies RB; Smits C; Wong ASW; Stock D; Christie M; Sandin S; Stewart AG
    J Struct Biol; 2017 Mar; 197(3):350-353. PubMed ID: 28115258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotary ATPases: models, machine elements and technical specifications.
    Stewart AG; Sobti M; Harvey RP; Stock D
    Bioarchitecture; 2013; 3(1):2-12. PubMed ID: 23369889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryo-EM studies of the rotary H
    Nakanishi A; Kishikawa JI; Mitsuoka K; Yokoyama K
    Biophys Physicobiol; 2019; 16():140-146. PubMed ID: 31660281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The F subunit of Thermus thermophilus V1-ATPase promotes ATPase activity but is not necessary for rotation.
    Imamura H; Ikeda C; Yoshida M; Yokoyama K
    J Biol Chem; 2004 Apr; 279(17):18085-90. PubMed ID: 14963028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Peripheral Stalk of Rotary ATPases.
    Colina-Tenorio L; Dautant A; Miranda-Astudillo H; Giraud MF; González-Halphen D
    Front Physiol; 2018; 9():1243. PubMed ID: 30233414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis.
    Boekema EJ; Ubbink-Kok T; Lolkema JS; Brisson A; Konings WN
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14291-3. PubMed ID: 9405605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP synthase: subunit-subunit interactions in the stator stalk.
    Weber J
    Biochim Biophys Acta; 2006; 1757(9-10):1162-70. PubMed ID: 16730323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluctuation theorem applied to F1-ATPase.
    Hayashi K; Ueno H; Iino R; Noji H
    Phys Rev Lett; 2010 May; 104(21):218103. PubMed ID: 20867140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed atomic force microscopy reveals rotary catalysis of rotorless F₁-ATPase.
    Uchihashi T; Iino R; Ando T; Noji H
    Science; 2011 Aug; 333(6043):755-8. PubMed ID: 21817054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.