These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22353719)

  • 1. Wide bandgap tunability in complex transition metal oxides by site-specific substitution.
    Choi WS; Chisholm MF; Singh DJ; Choi T; Jellison GE; Lee HN
    Nat Commun; 2012 Feb; 3():689. PubMed ID: 22353719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction.
    An H; Han JY; Kim B; Song J; Jeong SY; Franchini C; Bark CW; Lee S
    Sci Rep; 2016 Jun; 6():28313. PubMed ID: 27313099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Annealing Temperature on the Bandgap of Bi3.25La0.75FeTi2O12 Powders.
    Song MG; Han JY; Bark CW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8195-8. PubMed ID: 26726487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change of Phase Transition Temperature in Band Engineered Ferroelectric Lanthanum-Modified Bismuth Titanates.
    Tang R; Kim S; Bark CW
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7135-7139. PubMed ID: 32604571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate.
    Shah SH; Bristowe PD
    J Phys Condens Matter; 2011 Apr; 23(15):155902. PubMed ID: 21460424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Doping Ratio of Cobalt and Iron on the Structure and Optical Properties of Bi3.25La0.75Fe(x)Co(1-x)Ti2O12 (X = 0, 0.25, 0.5, 0.75, 1).
    Song MG; Han JY; Bark CW
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7841-4. PubMed ID: 26726425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping-free bandgap tunability in Fe
    Kadam SA; Phan GT; Pham DV; Patil RA; Lai CC; Chen YR; Liou Y; Ma YR
    Nanoscale Adv; 2021 Sep; 3(19):5581-5588. PubMed ID: 36133276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and magnetic properties of Ti(2)O(3), Cr(2)O(3), and Fe(2)O(3) calculated by the screened exchange hybrid density functional.
    Guo Y; Clark SJ; Robertson J
    J Phys Condens Matter; 2012 Aug; 24(32):325504, 1-8. PubMed ID: 22809821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandgap Tunability in Sb-Alloyed BiVO₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications.
    Loiudice A; Ma J; Drisdell WS; Mattox TM; Cooper JK; Thao T; Giannini C; Yano J; Wang LW; Sharp ID; Buonsanti R
    Adv Mater; 2015 Nov; 27(42):6733-40. PubMed ID: 26414483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition.
    Zhang J; Chen X; Jiang K; Shen Y; Li Y; Hu Z; Chu J
    Dalton Trans; 2011 Aug; 40(31):7967-75. PubMed ID: 21743909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator.
    Zhang S; Zhou W; Ma Y; Ji J; Cai B; Yang SA; Zhu Z; Chen Z; Zeng H
    Nano Lett; 2017 Jun; 17(6):3434-3440. PubMed ID: 28460176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band Gap Tuning in Bismuth Oxide Carbodiimide Bi
    Corkett AJ; Chen Z; Bogdanovski D; Slabon A; Dronskowski R
    Inorg Chem; 2019 May; 58(9):6467-6473. PubMed ID: 30990029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hard oxide semiconductor with a direct and narrow bandgap and switchable p-n electrical conduction.
    Ovsyannikov SV; Karkin AE; Morozova NV; Shchennikov VV; Bykova E; Abakumov AM; Tsirlin AA; Glazyrin KV; Dubrovinsky L
    Adv Mater; 2014 Dec; 26(48):8185-91. PubMed ID: 25348375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically Tunable Bandgaps in Bilayer MoS₂.
    Chu T; Ilatikhameneh H; Klimeck G; Rahman R; Chen Z
    Nano Lett; 2015 Dec; 15(12):8000-7. PubMed ID: 26560813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the upconversion light emission by bandgap engineering in bismuth oxide-based upconverting nanoparticles.
    Back M; Trave E; Mazzucco N; Riello P; Benedetti A
    Nanoscale; 2017 May; 9(19):6353-6361. PubMed ID: 28451657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap.
    Susarla S; Kutana A; Hachtel JA; Kochat V; Apte A; Vajtai R; Idrobo JC; Yakobson BI; Tiwary CS; Ajayan PM
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28707411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap.
    Li L; Li P; Lu N; Dai J; Zeng XC
    Adv Sci (Weinh); 2015 Dec; 2(12):1500290. PubMed ID: 27774379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide.
    He J; Di Sante D; Li R; Chen XQ; Rondinelli JM; Franchini C
    Nat Commun; 2018 Feb; 9(1):492. PubMed ID: 29402881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuously tunable electronic structure of transition metal dichalcogenides superlattices.
    Zhao YH; Yang F; Wang J; Guo H; Ji W
    Sci Rep; 2015 Feb; 5():8356. PubMed ID: 25677917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications.
    Matsuo H; Noguchi Y; Miyayama M
    Nat Commun; 2017 Aug; 8(1):207. PubMed ID: 28785049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.