These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22353866)

  • 41. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis.
    Qi PL; Zhou HR; Zhao QQ; Feng C; Ning YQ; Su YN; Cai XW; Yuan DY; Zhang ZC; Su XM; Chen SS; Li L; Chen S; He XJ
    Nucleic Acids Res; 2022 Jul; 50(13):7380-7395. PubMed ID: 35766439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arabidopsis circadian clock and photoperiodism: time to think about location.
    Imaizumi T
    Curr Opin Plant Biol; 2010 Feb; 13(1):83-9. PubMed ID: 19836294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
    Noh YS; Amasino RM
    Plant Cell; 2003 Jul; 15(7):1671-82. PubMed ID: 12837955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality.
    Kim SY; Yu X; Michaels SD
    Plant Physiol; 2008 Sep; 148(1):269-79. PubMed ID: 18667727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure.
    Jin JB; Jin YH; Lee J; Miura K; Yoo CY; Kim WY; Van Oosten M; Hyun Y; Somers DE; Lee I; Yun DJ; Bressan RA; Hasegawa PM
    Plant J; 2008 Feb; 53(3):530-40. PubMed ID: 18069938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana.
    Ebine K; Uemura T; Nakano A; Ueda T
    PLoS One; 2012; 7(7):e42239. PubMed ID: 22848750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.
    Searle I; He Y; Turck F; Vincent C; Fornara F; Kröber S; Amasino RA; Coupland G
    Genes Dev; 2006 Apr; 20(7):898-912. PubMed ID: 16600915
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrate Transporter 1.1 is involved in regulating flowering time via transcriptional regulation of FLOWERING LOCUS C in Arabidopsis thaliana.
    Teng Y; Liang Y; Wang M; Mai H; Ke L
    Plant Sci; 2019 Jul; 284():30-36. PubMed ID: 31084876
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time.
    Simpson GG
    Curr Opin Plant Biol; 2004 Oct; 7(5):570-4. PubMed ID: 15337100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis.
    Choi K; Kim S; Kim SY; Kim M; Hyun Y; Lee H; Choe S; Kim SG; Michaels S; Lee I
    Plant Cell; 2005 Oct; 17(10):2647-60. PubMed ID: 16155178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development.
    Lázaro A; Gómez-Zambrano A; López-González L; Piñeiro M; Jarillo JA
    J Exp Bot; 2008; 59(3):653-66. PubMed ID: 18296430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of chromatin modification in flowering-time control.
    He Y; Amasino RM
    Trends Plant Sci; 2005 Jan; 10(1):30-5. PubMed ID: 15642521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms.
    Hemmes H; Henriques R; Jang IC; Kim S; Chua NH
    Plant Cell Physiol; 2012 Dec; 53(12):2016-29. PubMed ID: 23128602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KHZ1 and KHZ2, novel members of the autonomous pathway, repress the splicing efficiency of FLC pre-mRNA in Arabidopsis.
    Yan Z; Shi H; Liu Y; Jing M; Han Y
    J Exp Bot; 2020 Feb; 71(4):1375-1386. PubMed ID: 31701139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis.
    Yoo SK; Wu X; Lee JS; Ahn JH
    Plant J; 2011 Jan; 65(1):62-76. PubMed ID: 21175890
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis.
    Xu F; Li T; Xu PB; Li L; Du SS; Lian HL; Yang HQ
    FEBS Lett; 2016 Feb; 590(4):541-9. PubMed ID: 26801684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A mutation of casein kinase 2 α4 subunit affects multiple developmental processes in Arabidopsis.
    Wang WS; Zhu J; Zhang KX; Lü YT; Xu HH
    Plant Cell Rep; 2016 May; 35(5):1071-80. PubMed ID: 26883224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circadian clock parameter measurement: characterization of clock transcription factors using surface plasmon resonance.
    O'Neill JS; van Ooijen G; Le Bihan T; Millar AJ
    J Biol Rhythms; 2011 Apr; 26(2):91-8. PubMed ID: 21454289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.