BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22354149)

  • 1. A disulfide bound-molecular beacon as a fluorescent probe for the detection of reduced glutathione and its application in cells.
    Guo Y; Wang H; Sun Y; Qu B
    Chem Commun (Camb); 2012 Mar; 48(26):3221-3. PubMed ID: 22354149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrofluorimetric determination of total free thiols based on formation of complexes of Ce(III) with disulfide bonds.
    Han GC; Peng Y; Hao YQ; Liu YN; Zhou F
    Anal Chim Acta; 2010 Feb; 659(1-2):238-42. PubMed ID: 20103130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence imaging of cellular glutathione using a latent rhodamine.
    Pires MM; Chmielewski J
    Org Lett; 2008 Mar; 10(5):837-40. PubMed ID: 18257581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent probe which allows highly specific thiol labeling at low pH.
    Nielsen JW; Jensen KS; Hansen RE; Gotfredsen CH; Winther JR
    Anal Biochem; 2012 Feb; 421(1):115-20. PubMed ID: 22178918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor.
    Liu CP; Wu TH; Liu CY; Lin SY
    Anal Chim Acta; 2014 Nov; 849():57-63. PubMed ID: 25300218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression.
    Kwon H; Lee K; Kim HJ
    Chem Commun (Camb); 2011 Feb; 47(6):1773-5. PubMed ID: 21127785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive and selective detection method for thiol compounds using novel fluorescence probe.
    Zheng LQ; Li Y; Yu XD; Xu JJ; Chen HY
    Anal Chim Acta; 2014 Nov; 850():71-7. PubMed ID: 25441162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes.
    Pullela PK; Chiku T; Carvan MJ; Sem DS
    Anal Biochem; 2006 May; 352(2):265-73. PubMed ID: 16527239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo designed peptidic redox potential probe: linking sensitized emission to disulfide bond formation.
    Lee K; Dzubeck V; Latshaw L; Schneider JP
    J Am Chem Soc; 2004 Oct; 126(42):13616-7. PubMed ID: 15493909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-disulfide redox equilibria of glutathione metaboloma compounds investigated by tandem mass spectrometry.
    Rubino FM; Pitton M; Caneva E; Pappini M; Colombi A
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3935-48. PubMed ID: 19003853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase.
    Yi L; Li H; Sun L; Liu L; Zhang C; Xi Z
    Angew Chem Int Ed Engl; 2009; 48(22):4034-7. PubMed ID: 19388016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for measuring disulfide reduction by cultured mammalian cells: relative contributions of glutathione-dependent and glutathione-independent mechanisms.
    Biaglow JE; Donahue J; Tuttle S; Held K; Chrestensen C; Mieyal J
    Anal Biochem; 2000 May; 281(1):77-86. PubMed ID: 10847613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1.
    Wang W; Li L; Liu S; Ma C; Zhang S
    J Am Chem Soc; 2008 Aug; 130(33):10846-7. PubMed ID: 18652464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Molecular beacon"-directed fluorescence of Hoechst dyes for visual detection of Hg(II) and biothiols and its application for a logic gate.
    Zhang M; Le HN; Jiang XQ; Ye BC
    Chem Commun (Camb); 2013 Mar; 49(21):2133-5. PubMed ID: 23389052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells.
    Dai X; Du ZF; Wang LH; Miao JY; Zhao BX
    Anal Chim Acta; 2016 May; 922():64-70. PubMed ID: 27154833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cysteine-selective fluorescent probe for the cellular detection of cysteine.
    Jung HS; Han JH; Pradhan T; Kim S; Lee SW; Sessler JL; Kim TW; Kang C; Kim JS
    Biomaterials; 2012 Jan; 33(3):945-53. PubMed ID: 22048010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols.
    Ros-Lis JV; García B; Jiménez D; Martínez-Máñez R; Sancenón F; Soto J; Gonzalvo F; Valldecabres MC
    J Am Chem Soc; 2004 Apr; 126(13):4064-5. PubMed ID: 15053569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.
    Legenzov EA; Sims SJ; Dirda ND; Rosen GM; Kao JP
    Biochemistry; 2015 Dec; 54(47):6973-82. PubMed ID: 26523485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced glutathione and glutathione disulfide.
    Browne RW; Armstrong D
    Methods Mol Biol; 1998; 108():347-52. PubMed ID: 9921543
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.